x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=-\frac{5}{2}+\frac{1}{2}i=-2.5+0.5i
x=-\frac{5}{2}-\frac{1}{2}i=-2.5-0.5i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}+2x+1+\left(x+4\right)^{2}=4
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+2x+1+x^{2}+8x+16=4
\left(x+4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
2x^{2}+2x+1+8x+16=4
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}+10x+1+16=4
10x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು 8x ಕೂಡಿಸಿ.
2x^{2}+10x+17=4
17 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 16 ಸೇರಿಸಿ.
2x^{2}+10x+17-4=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
2x^{2}+10x+13=0
13 ಪಡೆದುಕೊಳ್ಳಲು 17 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 13}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 10 ಮತ್ತು c ಗೆ 13 ಬದಲಿಸಿ.
x=\frac{-10±\sqrt{100-4\times 2\times 13}}{2\times 2}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100-8\times 13}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{100-104}}{2\times 2}
13 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{-4}}{2\times 2}
-104 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±2i}{2\times 2}
-4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-10±2i}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10+2i}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±2i}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i ಗೆ -10 ಸೇರಿಸಿ.
x=-\frac{5}{2}+\frac{1}{2}i
4 ದಿಂದ -10+2i ಭಾಗಿಸಿ.
x=\frac{-10-2i}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±2i}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 2i ಕಳೆಯಿರಿ.
x=-\frac{5}{2}-\frac{1}{2}i
4 ದಿಂದ -10-2i ಭಾಗಿಸಿ.
x=-\frac{5}{2}+\frac{1}{2}i x=-\frac{5}{2}-\frac{1}{2}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+2x+1+\left(x+4\right)^{2}=4
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+2x+1+x^{2}+8x+16=4
\left(x+4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
2x^{2}+2x+1+8x+16=4
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}+10x+1+16=4
10x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು 8x ಕೂಡಿಸಿ.
2x^{2}+10x+17=4
17 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 16 ಸೇರಿಸಿ.
2x^{2}+10x=4-17
ಎರಡೂ ಕಡೆಗಳಿಂದ 17 ಕಳೆಯಿರಿ.
2x^{2}+10x=-13
-13 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 17 ಕಳೆಯಿರಿ.
\frac{2x^{2}+10x}{2}=-\frac{13}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{10}{2}x=-\frac{13}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+5x=-\frac{13}{2}
2 ದಿಂದ 10 ಭಾಗಿಸಿ.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{13}{2}+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+5x+\frac{25}{4}=-\frac{13}{2}+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+5x+\frac{25}{4}=-\frac{1}{4}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{4} ಗೆ -\frac{13}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{5}{2}\right)^{2}=-\frac{1}{4}
ಅಪವರ್ತನ x^{2}+5x+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{2}=\frac{1}{2}i x+\frac{5}{2}=-\frac{1}{2}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-\frac{5}{2}+\frac{1}{2}i x=-\frac{5}{2}-\frac{1}{2}i
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{2} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}