ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

n^{2}-2n-15=20
n-5 ರಿಂದು n+3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
n^{2}-2n-15-20=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 20 ಕಳೆಯಿರಿ.
n^{2}-2n-35=0
-35 ಪಡೆದುಕೊಳ್ಳಲು -15 ದಿಂದ 20 ಕಳೆಯಿರಿ.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-35\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -2 ಮತ್ತು c ಗೆ -35 ಬದಲಿಸಿ.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-35\right)}}{2}
ವರ್ಗ -2.
n=\frac{-\left(-2\right)±\sqrt{4+140}}{2}
-35 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-2\right)±\sqrt{144}}{2}
140 ಗೆ 4 ಸೇರಿಸಿ.
n=\frac{-\left(-2\right)±12}{2}
144 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{2±12}{2}
-2 ನ ವಿಲೋಮವು 2 ಆಗಿದೆ.
n=\frac{14}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{2±12}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12 ಗೆ 2 ಸೇರಿಸಿ.
n=7
2 ದಿಂದ 14 ಭಾಗಿಸಿ.
n=-\frac{10}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{2±12}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 12 ಕಳೆಯಿರಿ.
n=-5
2 ದಿಂದ -10 ಭಾಗಿಸಿ.
n=7 n=-5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
n^{2}-2n-15=20
n-5 ರಿಂದು n+3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
n^{2}-2n=20+15
ಎರಡೂ ಬದಿಗಳಿಗೆ 15 ಸೇರಿಸಿ.
n^{2}-2n=35
35 ಪಡೆದುಕೊಳ್ಳಲು 20 ಮತ್ತು 15 ಸೇರಿಸಿ.
n^{2}-2n+1=35+1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-2n+1=36
1 ಗೆ 35 ಸೇರಿಸಿ.
\left(n-1\right)^{2}=36
ಅಪವರ್ತನ n^{2}-2n+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-1\right)^{2}}=\sqrt{36}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-1=6 n-1=-6
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=7 n=-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.