m ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\\m=i\gamma _{μ}∂^{\mu }\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&\psi =0\end{matrix}\right.
γ_μ ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\gamma _{μ}=-\frac{im}{∂^{\mu }}\text{, }&\mu =0\text{ or }∂\neq 0\\\gamma _{μ}\in \mathrm{C}\text{, }&\psi =0\text{ or }\left(m=0\text{ and }∂=0\text{ and }\mu \neq 0\right)\end{matrix}\right.
ರಸಪ್ರಶ್ನೆ
Complex Number
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
( i \gamma _ { \mu } \partial ^ { \mu } - m ) \psi = 0
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
i\gamma _{μ}∂^{\mu }\psi -m\psi =0
\psi ದಿಂದ i\gamma _{μ}∂^{\mu }-m ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-m\psi =-i\gamma _{μ}∂^{\mu }\psi
ಎರಡೂ ಕಡೆಗಳಿಂದ i\gamma _{μ}∂^{\mu }\psi ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\left(-\psi \right)m=-i\gamma _{μ}\psi ∂^{\mu }
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(-\psi \right)m}{-\psi }=-\frac{i\gamma _{μ}\psi ∂^{\mu }}{-\psi }
-\psi ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m=-\frac{i\gamma _{μ}\psi ∂^{\mu }}{-\psi }
-\psi ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -\psi ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
m=i\gamma _{μ}∂^{\mu }
-\psi ದಿಂದ -i\gamma _{μ}∂^{\mu }\psi ಭಾಗಿಸಿ.
i\gamma _{μ}∂^{\mu }\psi -m\psi =0
\psi ದಿಂದ i\gamma _{μ}∂^{\mu }-m ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
i\gamma _{μ}∂^{\mu }\psi =m\psi
ಎರಡೂ ಬದಿಗಳಿಗೆ m\psi ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
i\psi ∂^{\mu }\gamma _{μ}=m\psi
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{i\psi ∂^{\mu }\gamma _{μ}}{i\psi ∂^{\mu }}=\frac{m\psi }{i\psi ∂^{\mu }}
i∂^{\mu }\psi ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\gamma _{μ}=\frac{m\psi }{i\psi ∂^{\mu }}
i∂^{\mu }\psi ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ i∂^{\mu }\psi ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
\gamma _{μ}=-\frac{im}{∂^{\mu }}
i∂^{\mu }\psi ದಿಂದ m\psi ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}