ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

13x-36-x^{2}=3x
x-4 ರಿಂದು 9-x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
13x-36-x^{2}-3x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
10x-36-x^{2}=0
10x ಪಡೆದುಕೊಳ್ಳಲು 13x ಮತ್ತು -3x ಕೂಡಿಸಿ.
-x^{2}+10x-36=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 10 ಮತ್ತು c ಗೆ -36 ಬದಲಿಸಿ.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100+4\left(-36\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{100-144}}{2\left(-1\right)}
-36 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{-44}}{2\left(-1\right)}
-144 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±2\sqrt{11}i}{2\left(-1\right)}
-44 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-10±2\sqrt{11}i}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10+2\sqrt{11}i}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±2\sqrt{11}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{11} ಗೆ -10 ಸೇರಿಸಿ.
x=-\sqrt{11}i+5
-2 ದಿಂದ -10+2i\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{11}i-10}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±2\sqrt{11}i}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 2i\sqrt{11} ಕಳೆಯಿರಿ.
x=5+\sqrt{11}i
-2 ದಿಂದ -10-2i\sqrt{11} ಭಾಗಿಸಿ.
x=-\sqrt{11}i+5 x=5+\sqrt{11}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
13x-36-x^{2}=3x
x-4 ರಿಂದು 9-x ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
13x-36-x^{2}-3x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
10x-36-x^{2}=0
10x ಪಡೆದುಕೊಳ್ಳಲು 13x ಮತ್ತು -3x ಕೂಡಿಸಿ.
10x-x^{2}=36
ಎರಡೂ ಬದಿಗಳಿಗೆ 36 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
-x^{2}+10x=36
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+10x}{-1}=\frac{36}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{10}{-1}x=\frac{36}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-10x=\frac{36}{-1}
-1 ದಿಂದ 10 ಭಾಗಿಸಿ.
x^{2}-10x=-36
-1 ದಿಂದ 36 ಭಾಗಿಸಿ.
x^{2}-10x+\left(-5\right)^{2}=-36+\left(-5\right)^{2}
-5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-10x+25=-36+25
ವರ್ಗ -5.
x^{2}-10x+25=-11
25 ಗೆ -36 ಸೇರಿಸಿ.
\left(x-5\right)^{2}=-11
ಅಪವರ್ತನ x^{2}-10x+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-11}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-5=\sqrt{11}i x-5=-\sqrt{11}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=5+\sqrt{11}i x=-\sqrt{11}i+5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.