ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

10a-21-a^{2}=1
a-3 ರಿಂದು 7-a ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
10a-21-a^{2}-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
10a-22-a^{2}=0
-22 ಪಡೆದುಕೊಳ್ಳಲು -21 ದಿಂದ 1 ಕಳೆಯಿರಿ.
-a^{2}+10a-22=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 10 ಮತ್ತು c ಗೆ -22 ಬದಲಿಸಿ.
a=\frac{-10±\sqrt{100-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
ವರ್ಗ 10.
a=\frac{-10±\sqrt{100+4\left(-22\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-10±\sqrt{100-88}}{2\left(-1\right)}
-22 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-10±\sqrt{12}}{2\left(-1\right)}
-88 ಗೆ 100 ಸೇರಿಸಿ.
a=\frac{-10±2\sqrt{3}}{2\left(-1\right)}
12 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{-10±2\sqrt{3}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{2\sqrt{3}-10}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-10±2\sqrt{3}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{3} ಗೆ -10 ಸೇರಿಸಿ.
a=5-\sqrt{3}
-2 ದಿಂದ -10+2\sqrt{3} ಭಾಗಿಸಿ.
a=\frac{-2\sqrt{3}-10}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-10±2\sqrt{3}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 2\sqrt{3} ಕಳೆಯಿರಿ.
a=\sqrt{3}+5
-2 ದಿಂದ -10-2\sqrt{3} ಭಾಗಿಸಿ.
a=5-\sqrt{3} a=\sqrt{3}+5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
10a-21-a^{2}=1
a-3 ರಿಂದು 7-a ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
10a-a^{2}=1+21
ಎರಡೂ ಬದಿಗಳಿಗೆ 21 ಸೇರಿಸಿ.
10a-a^{2}=22
22 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 21 ಸೇರಿಸಿ.
-a^{2}+10a=22
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-a^{2}+10a}{-1}=\frac{22}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a^{2}+\frac{10}{-1}a=\frac{22}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a^{2}-10a=\frac{22}{-1}
-1 ದಿಂದ 10 ಭಾಗಿಸಿ.
a^{2}-10a=-22
-1 ದಿಂದ 22 ಭಾಗಿಸಿ.
a^{2}-10a+\left(-5\right)^{2}=-22+\left(-5\right)^{2}
-5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
a^{2}-10a+25=-22+25
ವರ್ಗ -5.
a^{2}-10a+25=3
25 ಗೆ -22 ಸೇರಿಸಿ.
\left(a-5\right)^{2}=3
ಅಪವರ್ತನ a^{2}-10a+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(a-5\right)^{2}}=\sqrt{3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a-5=\sqrt{3} a-5=-\sqrt{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
a=\sqrt{3}+5 a=5-\sqrt{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.