x ಪರಿಹರಿಸಿ
x=\frac{1}{4}=0.25
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
9x^{2}-24x+16-\left(x+3\right)^{2}=0
\left(3x-4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
\left(x+3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9x^{2}-24x+16-x^{2}-6x-9=0
x^{2}+6x+9 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
8x^{2}-24x+16-6x-9=0
8x^{2} ಪಡೆದುಕೊಳ್ಳಲು 9x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
8x^{2}-30x+16-9=0
-30x ಪಡೆದುಕೊಳ್ಳಲು -24x ಮತ್ತು -6x ಕೂಡಿಸಿ.
8x^{2}-30x+7=0
7 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 9 ಕಳೆಯಿರಿ.
a+b=-30 ab=8\times 7=56
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 8x^{2}+ax+bx+7 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-56 -2,-28 -4,-14 -7,-8
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 56 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-56=-57 -2-28=-30 -4-14=-18 -7-8=-15
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-28 b=-2
ಪರಿಹಾರವು -30 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(8x^{2}-28x\right)+\left(-2x+7\right)
\left(8x^{2}-28x\right)+\left(-2x+7\right) ನ ಹಾಗೆ 8x^{2}-30x+7 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
4x\left(2x-7\right)-\left(2x-7\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 4x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2x-7\right)\left(4x-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 2x-7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{7}{2} x=\frac{1}{4}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 2x-7=0 ಮತ್ತು 4x-1=0 ಪರಿಹರಿಸಿ.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
\left(3x-4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
\left(x+3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9x^{2}-24x+16-x^{2}-6x-9=0
x^{2}+6x+9 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
8x^{2}-24x+16-6x-9=0
8x^{2} ಪಡೆದುಕೊಳ್ಳಲು 9x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
8x^{2}-30x+16-9=0
-30x ಪಡೆದುಕೊಳ್ಳಲು -24x ಮತ್ತು -6x ಕೂಡಿಸಿ.
8x^{2}-30x+7=0
7 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 9 ಕಳೆಯಿರಿ.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 8\times 7}}{2\times 8}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 8, b ಗೆ -30 ಮತ್ತು c ಗೆ 7 ಬದಲಿಸಿ.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 8\times 7}}{2\times 8}
ವರ್ಗ -30.
x=\frac{-\left(-30\right)±\sqrt{900-32\times 7}}{2\times 8}
8 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-30\right)±\sqrt{900-224}}{2\times 8}
7 ಅನ್ನು -32 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-30\right)±\sqrt{676}}{2\times 8}
-224 ಗೆ 900 ಸೇರಿಸಿ.
x=\frac{-\left(-30\right)±26}{2\times 8}
676 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{30±26}{2\times 8}
-30 ನ ವಿಲೋಮವು 30 ಆಗಿದೆ.
x=\frac{30±26}{16}
8 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{56}{16}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{30±26}{16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 26 ಗೆ 30 ಸೇರಿಸಿ.
x=\frac{7}{2}
8 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{56}{16} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{4}{16}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{30±26}{16} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 30 ದಿಂದ 26 ಕಳೆಯಿರಿ.
x=\frac{1}{4}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{4}{16} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{7}{2} x=\frac{1}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
\left(3x-4\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
\left(x+3\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
9x^{2}-24x+16-x^{2}-6x-9=0
x^{2}+6x+9 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
8x^{2}-24x+16-6x-9=0
8x^{2} ಪಡೆದುಕೊಳ್ಳಲು 9x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
8x^{2}-30x+16-9=0
-30x ಪಡೆದುಕೊಳ್ಳಲು -24x ಮತ್ತು -6x ಕೂಡಿಸಿ.
8x^{2}-30x+7=0
7 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 9 ಕಳೆಯಿರಿ.
8x^{2}-30x=-7
ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{8x^{2}-30x}{8}=-\frac{7}{8}
8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{30}{8}\right)x=-\frac{7}{8}
8 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 8 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{15}{4}x=-\frac{7}{8}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-30}{8} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=-\frac{7}{8}+\left(-\frac{15}{8}\right)^{2}
-\frac{15}{8} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{15}{4} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{15}{8} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{15}{4}x+\frac{225}{64}=-\frac{7}{8}+\frac{225}{64}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{15}{8} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{169}{64}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{225}{64} ಗೆ -\frac{7}{8} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{15}{8}\right)^{2}=\frac{169}{64}
ಅಪವರ್ತನ x^{2}-\frac{15}{4}x+\frac{225}{64}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{15}{8}=\frac{13}{8} x-\frac{15}{8}=-\frac{13}{8}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{7}{2} x=\frac{1}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{15}{8} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}