ಮೌಲ್ಯಮಾಪನ
27x^{3}+\frac{64}{x^{3}}
ವಿಸ್ತರಿಸು
27x^{3}+\frac{64}{x^{3}}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(\frac{3xx}{x}+\frac{4}{x}\right)\left(9x^{2}-12+\frac{16}{x^{2}}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು 3x ಬಾರಿ ಗುಣಿಸಿ.
\frac{3xx+4}{x}\left(9x^{2}-12+\frac{16}{x^{2}}\right)
\frac{3xx}{x} ಮತ್ತು \frac{4}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x^{2}+4}{x}\left(9x^{2}-12+\frac{16}{x^{2}}\right)
3xx+4 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{3x^{2}+4}{x}\left(\frac{\left(9x^{2}-12\right)x^{2}}{x^{2}}+\frac{16}{x^{2}}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x^{2}}{x^{2}} ಅನ್ನು 9x^{2}-12 ಬಾರಿ ಗುಣಿಸಿ.
\frac{3x^{2}+4}{x}\times \frac{\left(9x^{2}-12\right)x^{2}+16}{x^{2}}
\frac{\left(9x^{2}-12\right)x^{2}}{x^{2}} ಮತ್ತು \frac{16}{x^{2}} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x^{2}+4}{x}\times \frac{9x^{4}-12x^{2}+16}{x^{2}}
\left(9x^{2}-12\right)x^{2}+16 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\left(3x^{2}+4\right)\left(9x^{4}-12x^{2}+16\right)}{xx^{2}}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{9x^{4}-12x^{2}+16}{x^{2}} ಅನ್ನು \frac{3x^{2}+4}{x} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(3x^{2}+4\right)\left(9x^{4}-12x^{2}+16\right)}{x^{3}}
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 3 ಪಡೆಯಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
\frac{27x^{6}+64}{x^{3}}
9x^{4}-12x^{2}+16 ರಿಂದು 3x^{2}+4 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
\left(\frac{3xx}{x}+\frac{4}{x}\right)\left(9x^{2}-12+\frac{16}{x^{2}}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು 3x ಬಾರಿ ಗುಣಿಸಿ.
\frac{3xx+4}{x}\left(9x^{2}-12+\frac{16}{x^{2}}\right)
\frac{3xx}{x} ಮತ್ತು \frac{4}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x^{2}+4}{x}\left(9x^{2}-12+\frac{16}{x^{2}}\right)
3xx+4 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{3x^{2}+4}{x}\left(\frac{\left(9x^{2}-12\right)x^{2}}{x^{2}}+\frac{16}{x^{2}}\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x^{2}}{x^{2}} ಅನ್ನು 9x^{2}-12 ಬಾರಿ ಗುಣಿಸಿ.
\frac{3x^{2}+4}{x}\times \frac{\left(9x^{2}-12\right)x^{2}+16}{x^{2}}
\frac{\left(9x^{2}-12\right)x^{2}}{x^{2}} ಮತ್ತು \frac{16}{x^{2}} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x^{2}+4}{x}\times \frac{9x^{4}-12x^{2}+16}{x^{2}}
\left(9x^{2}-12\right)x^{2}+16 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\left(3x^{2}+4\right)\left(9x^{4}-12x^{2}+16\right)}{xx^{2}}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{9x^{4}-12x^{2}+16}{x^{2}} ಅನ್ನು \frac{3x^{2}+4}{x} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\left(3x^{2}+4\right)\left(9x^{4}-12x^{2}+16\right)}{x^{3}}
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 3 ಪಡೆಯಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
\frac{27x^{6}+64}{x^{3}}
9x^{4}-12x^{2}+16 ರಿಂದು 3x^{2}+4 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}