ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4y^{2}-4y+1-2\left(2y-1\right)-3=0
\left(2y-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4y^{2}-4y+1-4y+2-3=0
2y-1 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4y^{2}-8y+1+2-3=0
-8y ಪಡೆದುಕೊಳ್ಳಲು -4y ಮತ್ತು -4y ಕೂಡಿಸಿ.
4y^{2}-8y+3-3=0
3 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
4y^{2}-8y=0
0 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
y\left(4y-8\right)=0
y ಅಪವರ್ತನಗೊಳಿಸಿ.
y=0 y=2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, y=0 ಮತ್ತು 4y-8=0 ಪರಿಹರಿಸಿ.
4y^{2}-4y+1-2\left(2y-1\right)-3=0
\left(2y-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4y^{2}-4y+1-4y+2-3=0
2y-1 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4y^{2}-8y+1+2-3=0
-8y ಪಡೆದುಕೊಳ್ಳಲು -4y ಮತ್ತು -4y ಕೂಡಿಸಿ.
4y^{2}-8y+3-3=0
3 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
4y^{2}-8y=0
0 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ -8 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
y=\frac{-\left(-8\right)±8}{2\times 4}
\left(-8\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{8±8}{2\times 4}
-8 ನ ವಿಲೋಮವು 8 ಆಗಿದೆ.
y=\frac{8±8}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{16}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{8±8}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ಗೆ 8 ಸೇರಿಸಿ.
y=2
8 ದಿಂದ 16 ಭಾಗಿಸಿ.
y=\frac{0}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{8±8}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ದಿಂದ 8 ಕಳೆಯಿರಿ.
y=0
8 ದಿಂದ 0 ಭಾಗಿಸಿ.
y=2 y=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4y^{2}-4y+1-2\left(2y-1\right)-3=0
\left(2y-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
4y^{2}-4y+1-4y+2-3=0
2y-1 ದಿಂದ -2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4y^{2}-8y+1+2-3=0
-8y ಪಡೆದುಕೊಳ್ಳಲು -4y ಮತ್ತು -4y ಕೂಡಿಸಿ.
4y^{2}-8y+3-3=0
3 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
4y^{2}-8y=0
0 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\frac{4y^{2}-8y}{4}=\frac{0}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y^{2}+\left(-\frac{8}{4}\right)y=\frac{0}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
y^{2}-2y=\frac{0}{4}
4 ದಿಂದ -8 ಭಾಗಿಸಿ.
y^{2}-2y=0
4 ದಿಂದ 0 ಭಾಗಿಸಿ.
y^{2}-2y+1=1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
\left(y-1\right)^{2}=1
ಅಪವರ್ತನ y^{2}-2y+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y-1\right)^{2}}=\sqrt{1}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y-1=1 y-1=-1
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=2 y=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.