x ಪರಿಹರಿಸಿ
x=\frac{2}{3}\approx 0.666666667
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
8x^{2}-16x+6-x\left(2x-3\right)=0
4x-2 ರಿಂದು 2x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
8x^{2}-16x+6-\left(2x^{2}-3x\right)=0
2x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
8x^{2}-16x+6-2x^{2}+3x=0
2x^{2}-3x ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
6x^{2}-16x+6+3x=0
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 8x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
6x^{2}-13x+6=0
-13x ಪಡೆದುಕೊಳ್ಳಲು -16x ಮತ್ತು 3x ಕೂಡಿಸಿ.
a+b=-13 ab=6\times 6=36
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 6x^{2}+ax+bx+6 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 36 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-9 b=-4
ಪರಿಹಾರವು -13 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(6x^{2}-9x\right)+\left(-4x+6\right)
\left(6x^{2}-9x\right)+\left(-4x+6\right) ನ ಹಾಗೆ 6x^{2}-13x+6 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
3x\left(2x-3\right)-2\left(2x-3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 3x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2x-3\right)\left(3x-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 2x-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{3}{2} x=\frac{2}{3}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 2x-3=0 ಮತ್ತು 3x-2=0 ಪರಿಹರಿಸಿ.
8x^{2}-16x+6-x\left(2x-3\right)=0
4x-2 ರಿಂದು 2x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
8x^{2}-16x+6-\left(2x^{2}-3x\right)=0
2x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
8x^{2}-16x+6-2x^{2}+3x=0
2x^{2}-3x ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
6x^{2}-16x+6+3x=0
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 8x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
6x^{2}-13x+6=0
-13x ಪಡೆದುಕೊಳ್ಳಲು -16x ಮತ್ತು 3x ಕೂಡಿಸಿ.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 6}}{2\times 6}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 6, b ಗೆ -13 ಮತ್ತು c ಗೆ 6 ಬದಲಿಸಿ.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 6}}{2\times 6}
ವರ್ಗ -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 6}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 6}
6 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-13\right)±\sqrt{25}}{2\times 6}
-144 ಗೆ 169 ಸೇರಿಸಿ.
x=\frac{-\left(-13\right)±5}{2\times 6}
25 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{13±5}{2\times 6}
-13 ನ ವಿಲೋಮವು 13 ಆಗಿದೆ.
x=\frac{13±5}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{18}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{13±5}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ಗೆ 13 ಸೇರಿಸಿ.
x=\frac{3}{2}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{18}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{8}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{13±5}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 13 ದಿಂದ 5 ಕಳೆಯಿರಿ.
x=\frac{2}{3}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{8}{12} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{3}{2} x=\frac{2}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
8x^{2}-16x+6-x\left(2x-3\right)=0
4x-2 ರಿಂದು 2x-3 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
8x^{2}-16x+6-\left(2x^{2}-3x\right)=0
2x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
8x^{2}-16x+6-2x^{2}+3x=0
2x^{2}-3x ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
6x^{2}-16x+6+3x=0
6x^{2} ಪಡೆದುಕೊಳ್ಳಲು 8x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
6x^{2}-13x+6=0
-13x ಪಡೆದುಕೊಳ್ಳಲು -16x ಮತ್ತು 3x ಕೂಡಿಸಿ.
6x^{2}-13x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{6x^{2}-13x}{6}=-\frac{6}{6}
6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{13}{6}x=-\frac{6}{6}
6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{13}{6}x=-1
6 ದಿಂದ -6 ಭಾಗಿಸಿ.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=-1+\left(-\frac{13}{12}\right)^{2}
-\frac{13}{12} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{13}{6} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{13}{12} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-1+\frac{169}{144}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{13}{12} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{25}{144}
\frac{169}{144} ಗೆ -1 ಸೇರಿಸಿ.
\left(x-\frac{13}{12}\right)^{2}=\frac{25}{144}
ಅಪವರ್ತನ x^{2}-\frac{13}{6}x+\frac{169}{144}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{13}{12}=\frac{5}{12} x-\frac{13}{12}=-\frac{5}{12}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{3}{2} x=\frac{2}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{13}{12} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}