x ಪರಿಹರಿಸಿ
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
x=-3
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4x^{2}+20x+25=\left(x+2\right)^{2}
\left(2x+5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}+20x+25=x^{2}+4x+4
\left(x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}+20x+25-x^{2}=4x+4
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3x^{2}+20x+25=4x+4
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
3x^{2}+20x+25-4x=4
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
3x^{2}+16x+25=4
16x ಪಡೆದುಕೊಳ್ಳಲು 20x ಮತ್ತು -4x ಕೂಡಿಸಿ.
3x^{2}+16x+25-4=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
3x^{2}+16x+21=0
21 ಪಡೆದುಕೊಳ್ಳಲು 25 ದಿಂದ 4 ಕಳೆಯಿರಿ.
a+b=16 ab=3\times 21=63
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 3x^{2}+ax+bx+21 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,63 3,21 7,9
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 63 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+63=64 3+21=24 7+9=16
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=7 b=9
ಪರಿಹಾರವು 16 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(3x^{2}+7x\right)+\left(9x+21\right)
\left(3x^{2}+7x\right)+\left(9x+21\right) ನ ಹಾಗೆ 3x^{2}+16x+21 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(3x+7\right)+3\left(3x+7\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x+7\right)\left(x+3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3x+7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=-\frac{7}{3} x=-3
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 3x+7=0 ಮತ್ತು x+3=0 ಪರಿಹರಿಸಿ.
4x^{2}+20x+25=\left(x+2\right)^{2}
\left(2x+5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}+20x+25=x^{2}+4x+4
\left(x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}+20x+25-x^{2}=4x+4
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3x^{2}+20x+25=4x+4
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
3x^{2}+20x+25-4x=4
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
3x^{2}+16x+25=4
16x ಪಡೆದುಕೊಳ್ಳಲು 20x ಮತ್ತು -4x ಕೂಡಿಸಿ.
3x^{2}+16x+25-4=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
3x^{2}+16x+21=0
21 ಪಡೆದುಕೊಳ್ಳಲು 25 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ 16 ಮತ್ತು c ಗೆ 21 ಬದಲಿಸಿ.
x=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
ವರ್ಗ 16.
x=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-16±\sqrt{256-252}}{2\times 3}
21 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-16±\sqrt{4}}{2\times 3}
-252 ಗೆ 256 ಸೇರಿಸಿ.
x=\frac{-16±2}{2\times 3}
4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-16±2}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{14}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-16±2}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ಗೆ -16 ಸೇರಿಸಿ.
x=-\frac{7}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-14}{6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{18}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-16±2}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -16 ದಿಂದ 2 ಕಳೆಯಿರಿ.
x=-3
6 ದಿಂದ -18 ಭಾಗಿಸಿ.
x=-\frac{7}{3} x=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4x^{2}+20x+25=\left(x+2\right)^{2}
\left(2x+5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}+20x+25=x^{2}+4x+4
\left(x+2\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4x^{2}+20x+25-x^{2}=4x+4
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3x^{2}+20x+25=4x+4
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
3x^{2}+20x+25-4x=4
ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
3x^{2}+16x+25=4
16x ಪಡೆದುಕೊಳ್ಳಲು 20x ಮತ್ತು -4x ಕೂಡಿಸಿ.
3x^{2}+16x=4-25
ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ.
3x^{2}+16x=-21
-21 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 25 ಕಳೆಯಿರಿ.
\frac{3x^{2}+16x}{3}=-\frac{21}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{16}{3}x=-\frac{21}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{16}{3}x=-7
3 ದಿಂದ -21 ಭಾಗಿಸಿ.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=-7+\left(\frac{8}{3}\right)^{2}
\frac{8}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{16}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{8}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{16}{3}x+\frac{64}{9}=-7+\frac{64}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{8}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{1}{9}
\frac{64}{9} ಗೆ -7 ಸೇರಿಸಿ.
\left(x+\frac{8}{3}\right)^{2}=\frac{1}{9}
ಅಪವರ್ತನ x^{2}+\frac{16}{3}x+\frac{64}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{8}{3}=\frac{1}{3} x+\frac{8}{3}=-\frac{1}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-\frac{7}{3} x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{8}{3} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}