ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}+11x+5=8\times 5
x+5 ರಿಂದು 2x+1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}+11x+5=40
40 ಪಡೆದುಕೊಳ್ಳಲು 8 ಮತ್ತು 5 ಗುಣಿಸಿ.
2x^{2}+11x+5-40=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 40 ಕಳೆಯಿರಿ.
2x^{2}+11x-35=0
-35 ಪಡೆದುಕೊಳ್ಳಲು 5 ದಿಂದ 40 ಕಳೆಯಿರಿ.
x=\frac{-11±\sqrt{11^{2}-4\times 2\left(-35\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 11 ಮತ್ತು c ಗೆ -35 ಬದಲಿಸಿ.
x=\frac{-11±\sqrt{121-4\times 2\left(-35\right)}}{2\times 2}
ವರ್ಗ 11.
x=\frac{-11±\sqrt{121-8\left(-35\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-11±\sqrt{121+280}}{2\times 2}
-35 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-11±\sqrt{401}}{2\times 2}
280 ಗೆ 121 ಸೇರಿಸಿ.
x=\frac{-11±\sqrt{401}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{401}-11}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-11±\sqrt{401}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{401} ಗೆ -11 ಸೇರಿಸಿ.
x=\frac{-\sqrt{401}-11}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-11±\sqrt{401}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -11 ದಿಂದ \sqrt{401} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{401}-11}{4} x=\frac{-\sqrt{401}-11}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}+11x+5=8\times 5
x+5 ರಿಂದು 2x+1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
2x^{2}+11x+5=40
40 ಪಡೆದುಕೊಳ್ಳಲು 8 ಮತ್ತು 5 ಗುಣಿಸಿ.
2x^{2}+11x=40-5
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
2x^{2}+11x=35
35 ಪಡೆದುಕೊಳ್ಳಲು 40 ದಿಂದ 5 ಕಳೆಯಿರಿ.
\frac{2x^{2}+11x}{2}=\frac{35}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{11}{2}x=\frac{35}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=\frac{35}{2}+\left(\frac{11}{4}\right)^{2}
\frac{11}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{11}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{11}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{35}{2}+\frac{121}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{11}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{401}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{121}{16} ಗೆ \frac{35}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{11}{4}\right)^{2}=\frac{401}{16}
ಅಪವರ್ತನ x^{2}+\frac{11}{2}x+\frac{121}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{401}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{11}{4}=\frac{\sqrt{401}}{4} x+\frac{11}{4}=-\frac{\sqrt{401}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{401}-11}{4} x=\frac{-\sqrt{401}-11}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{11}{4} ಕಳೆಯಿರಿ.