ಮೌಲ್ಯಮಾಪನ
-125a^{11}
ವಿಸ್ತರಿಸು
-125a^{11}
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(-5a^{2}\right)^{3}\left(a^{1}\right)^{5}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಸರಳೀಕೃತಗೊಳಿಸಲು ಘಾತಾಂಕಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\left(-5\right)^{3}\left(a^{2}\right)^{3}\times 1^{5}\left(a^{1}\right)^{5}
ಘಾತಕ್ಕೆ ಎರಡು ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಗಳ ಉತ್ಪನ್ನವನ್ನು ಹೆಚ್ಚಿಸಲು, ಘಾತಕ್ಕೆ ಪ್ರತಿ ಸಂಖ್ಯೆಯನ್ನು ಹೆಚ್ಚಿಸಿ ಹಾಗೂ ಅದರ ಉತ್ಪನ್ನವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\left(-5\right)^{3}\times 1^{5}\left(a^{2}\right)^{3}\left(a^{1}\right)^{5}
ಗುಣಾಕಾರ ಪರಿವರ್ತನೀಯ ಗುಣ ಬಳಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{2\times 3}a^{5}
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{6}a^{5}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{6+5}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{11}
6 ಮತ್ತು 5 ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
-125\times 1^{5}a^{11}
3 ಘಾತಕ್ಕೆ -5 ಹೆಚ್ಚಿಸಿ.
\left(-5a^{2}\right)^{3}\left(a^{1}\right)^{5}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಸರಳೀಕೃತಗೊಳಿಸಲು ಘಾತಾಂಕಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\left(-5\right)^{3}\left(a^{2}\right)^{3}\times 1^{5}\left(a^{1}\right)^{5}
ಘಾತಕ್ಕೆ ಎರಡು ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಗಳ ಉತ್ಪನ್ನವನ್ನು ಹೆಚ್ಚಿಸಲು, ಘಾತಕ್ಕೆ ಪ್ರತಿ ಸಂಖ್ಯೆಯನ್ನು ಹೆಚ್ಚಿಸಿ ಹಾಗೂ ಅದರ ಉತ್ಪನ್ನವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\left(-5\right)^{3}\times 1^{5}\left(a^{2}\right)^{3}\left(a^{1}\right)^{5}
ಗುಣಾಕಾರ ಪರಿವರ್ತನೀಯ ಗುಣ ಬಳಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{2\times 3}a^{5}
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{6}a^{5}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{6+5}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
\left(-5\right)^{3}\times 1^{5}a^{11}
6 ಮತ್ತು 5 ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
-125\times 1^{5}a^{11}
3 ಘಾತಕ್ಕೆ -5 ಹೆಚ್ಚಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}