ಅಪವರ್ತನ
-4\left(x-\frac{9-\sqrt{161}}{8}\right)\left(x-\frac{\sqrt{161}+9}{8}\right)
ಮೌಲ್ಯಮಾಪನ
5+9x-4x^{2}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-4x^{2}+9x+5=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-9±\sqrt{9^{2}-4\left(-4\right)\times 5}}{2\left(-4\right)}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-9±\sqrt{81-4\left(-4\right)\times 5}}{2\left(-4\right)}
ವರ್ಗ 9.
x=\frac{-9±\sqrt{81+16\times 5}}{2\left(-4\right)}
-4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-9±\sqrt{81+80}}{2\left(-4\right)}
5 ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-9±\sqrt{161}}{2\left(-4\right)}
80 ಗೆ 81 ಸೇರಿಸಿ.
x=\frac{-9±\sqrt{161}}{-8}
-4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{161}-9}{-8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-9±\sqrt{161}}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{161} ಗೆ -9 ಸೇರಿಸಿ.
x=\frac{9-\sqrt{161}}{8}
-8 ದಿಂದ -9+\sqrt{161} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{161}-9}{-8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-9±\sqrt{161}}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -9 ದಿಂದ \sqrt{161} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{161}+9}{8}
-8 ದಿಂದ -9-\sqrt{161} ಭಾಗಿಸಿ.
-4x^{2}+9x+5=-4\left(x-\frac{9-\sqrt{161}}{8}\right)\left(x-\frac{\sqrt{161}+9}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{9-\sqrt{161}}{8} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{9+\sqrt{161}}{8} ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}