ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

8x\times \frac{1}{x}+16=x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 16x, 2,x,16 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\frac{8}{x}x+16=x
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 8\times \frac{1}{x} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{8x}{x}+16=x
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{8}{x}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{8x}{x}+\frac{16x}{x}=x
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
\frac{8x+16x}{x}=x
\frac{8x}{x} ಮತ್ತು \frac{16x}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{24x}{x}=x
8x+16x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{24x}{x}-x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
\frac{24x}{x}-\frac{xx}{x}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{24x-xx}{x}=0
\frac{24x}{x} ಮತ್ತು \frac{xx}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{24x-x^{2}}{x}=0
24x-xx ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
24x-x^{2}=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x\left(24-x\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=24
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು 24-x=0 ಪರಿಹರಿಸಿ.
x=24
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
8x\times \frac{1}{x}+16=x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 16x, 2,x,16 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\frac{8}{x}x+16=x
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 8\times \frac{1}{x} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{8x}{x}+16=x
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{8}{x}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{8x}{x}+\frac{16x}{x}=x
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
\frac{8x+16x}{x}=x
\frac{8x}{x} ಮತ್ತು \frac{16x}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{24x}{x}=x
8x+16x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{24x}{x}-x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
\frac{24x}{x}-\frac{xx}{x}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{24x-xx}{x}=0
\frac{24x}{x} ಮತ್ತು \frac{xx}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{24x-x^{2}}{x}=0
24x-xx ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
24x-x^{2}=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}+24x=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-24±\sqrt{24^{2}}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 24 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-24±24}{2\left(-1\right)}
24^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-24±24}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-24±24}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 24 ಗೆ -24 ಸೇರಿಸಿ.
x=0
-2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-\frac{48}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-24±24}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -24 ದಿಂದ 24 ಕಳೆಯಿರಿ.
x=24
-2 ದಿಂದ -48 ಭಾಗಿಸಿ.
x=0 x=24
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=24
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
8x\times \frac{1}{x}+16=x
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 16x, 2,x,16 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
\frac{8}{x}x+16=x
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 8\times \frac{1}{x} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{8x}{x}+16=x
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{8}{x}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{8x}{x}+\frac{16x}{x}=x
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
\frac{8x+16x}{x}=x
\frac{8x}{x} ಮತ್ತು \frac{16x}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{24x}{x}=x
8x+16x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{24x}{x}-x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
\frac{24x}{x}-\frac{xx}{x}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು x ಬಾರಿ ಗುಣಿಸಿ.
\frac{24x-xx}{x}=0
\frac{24x}{x} ಮತ್ತು \frac{xx}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{24x-x^{2}}{x}=0
24x-xx ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
24x-x^{2}=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-x^{2}+24x=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+24x}{-1}=\frac{0}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{24}{-1}x=\frac{0}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-24x=\frac{0}{-1}
-1 ದಿಂದ 24 ಭಾಗಿಸಿ.
x^{2}-24x=0
-1 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}-24x+\left(-12\right)^{2}=\left(-12\right)^{2}
-12 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -24 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -12 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-24x+144=144
ವರ್ಗ -12.
\left(x-12\right)^{2}=144
ಅಪವರ್ತನ x^{2}-24x+144. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-12\right)^{2}}=\sqrt{144}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-12=12 x-12=-12
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=24 x=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 12 ಸೇರಿಸಿ.
x=24
x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.