ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
ಅಪವರ್ತನ a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a+B ಮತ್ತು \left(B+a\right)^{2} ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(B+a\right)^{2} ಆಗಿದೆ. \frac{B+a}{B+a} ಅನ್ನು \frac{a^{2}}{a+B} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} ಮತ್ತು \frac{a^{3}}{\left(B+a\right)^{2}} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}\left(B+a\right)-a^{3} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}B+a^{3}-a^{3} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
ಅಪವರ್ತನ a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a+B ಮತ್ತು \left(B+a\right)\left(-B+a\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(B+a\right)\left(-B+a\right) ಆಗಿದೆ. \frac{-B+a}{-B+a} ಅನ್ನು \frac{a}{a+B} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} ಮತ್ತು \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
a\left(-B+a\right)-a^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
-aB+a^{2}-a^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
\frac{-aB}{\left(B+a\right)\left(-B+a\right)} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{a^{2}B}{\left(B+a\right)^{2}} ಗುಣಿಸುವ ಮೂಲಕ \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ದಿಂದ \frac{a^{2}B}{\left(B+a\right)^{2}} ಭಾಗಿಸಿ.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ Ba\left(B+a\right) ರದ್ದುಗೊಳಿಸಿ.
\frac{-aB+a^{2}}{-\left(B+a\right)}
-B+a ದಿಂದ a ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{-aB+a^{2}}{-B-a}
B+a ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
ಅಪವರ್ತನ a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a+B ಮತ್ತು \left(B+a\right)^{2} ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(B+a\right)^{2} ಆಗಿದೆ. \frac{B+a}{B+a} ಅನ್ನು \frac{a^{2}}{a+B} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} ಮತ್ತು \frac{a^{3}}{\left(B+a\right)^{2}} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}\left(B+a\right)-a^{3} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
a^{2}B+a^{3}-a^{3} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
ಅಪವರ್ತನ a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. a+B ಮತ್ತು \left(B+a\right)\left(-B+a\right) ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(B+a\right)\left(-B+a\right) ಆಗಿದೆ. \frac{-B+a}{-B+a} ಅನ್ನು \frac{a}{a+B} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} ಮತ್ತು \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
a\left(-B+a\right)-a^{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
-aB+a^{2}-a^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
\frac{-aB}{\left(B+a\right)\left(-B+a\right)} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{a^{2}B}{\left(B+a\right)^{2}} ಗುಣಿಸುವ ಮೂಲಕ \frac{-aB}{\left(B+a\right)\left(-B+a\right)} ದಿಂದ \frac{a^{2}B}{\left(B+a\right)^{2}} ಭಾಗಿಸಿ.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ Ba\left(B+a\right) ರದ್ದುಗೊಳಿಸಿ.
\frac{-aB+a^{2}}{-\left(B+a\right)}
-B+a ದಿಂದ a ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{-aB+a^{2}}{-B-a}
B+a ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.