ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{8}{5}+\frac{1}{3}=\frac{15}{29}xx
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\frac{24}{15}+\frac{5}{15}=\frac{15}{29}xx
5 ಮತ್ತು 3 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 15 ಆಗಿದೆ. 15 ಛೇದದ ಮೂಲಕ \frac{8}{5} ಮತ್ತು \frac{1}{3} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{24+5}{15}=\frac{15}{29}xx
\frac{24}{15} ಮತ್ತು \frac{5}{15} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{29}{15}=\frac{15}{29}xx
29 ಪಡೆದುಕೊಳ್ಳಲು 24 ಮತ್ತು 5 ಸೇರಿಸಿ.
\frac{29}{15}=\frac{15}{29}x^{2}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
\frac{15}{29}x^{2}=\frac{29}{15}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}=\frac{29}{15}\times \frac{29}{15}
ಎರಡೂ ಭಾಗಗಳನ್ನು \frac{15}{29} ರ ವ್ಯುತ್ಕ್ರಮವಾದ \frac{29}{15} ರಿಂದ ಗುಣಿಸಿ.
x^{2}=\frac{29\times 29}{15\times 15}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{29}{15} ಅನ್ನು \frac{29}{15} ಬಾರಿ ಗುಣಿಸಿ.
x^{2}=\frac{841}{225}
\frac{29\times 29}{15\times 15} ಭಿನ್ನಾಂಶದಲ್ಲಿ ಗುಣಾಕಾರ ಮಾಡಿ.
x=\frac{29}{15} x=-\frac{29}{15}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{8}{5}+\frac{1}{3}=\frac{15}{29}xx
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\frac{24}{15}+\frac{5}{15}=\frac{15}{29}xx
5 ಮತ್ತು 3 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 15 ಆಗಿದೆ. 15 ಛೇದದ ಮೂಲಕ \frac{8}{5} ಮತ್ತು \frac{1}{3} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{24+5}{15}=\frac{15}{29}xx
\frac{24}{15} ಮತ್ತು \frac{5}{15} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{29}{15}=\frac{15}{29}xx
29 ಪಡೆದುಕೊಳ್ಳಲು 24 ಮತ್ತು 5 ಸೇರಿಸಿ.
\frac{29}{15}=\frac{15}{29}x^{2}
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
\frac{15}{29}x^{2}=\frac{29}{15}
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
\frac{15}{29}x^{2}-\frac{29}{15}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{29}{15} ಕಳೆಯಿರಿ.
x=\frac{0±\sqrt{0^{2}-4\times \frac{15}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \frac{15}{29}, b ಗೆ 0 ಮತ್ತು c ಗೆ -\frac{29}{15} ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\times \frac{15}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
ವರ್ಗ 0.
x=\frac{0±\sqrt{-\frac{60}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
\frac{15}{29} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{4}}{2\times \frac{15}{29}}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ -\frac{29}{15} ಅನ್ನು -\frac{60}{29} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=\frac{0±2}{2\times \frac{15}{29}}
4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±2}{\frac{30}{29}}
\frac{15}{29} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{29}{15}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±2}{\frac{30}{29}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{30}{29} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 2 ಗುಣಿಸುವ ಮೂಲಕ \frac{30}{29} ದಿಂದ 2 ಭಾಗಿಸಿ.
x=-\frac{29}{15}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±2}{\frac{30}{29}} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{30}{29} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -2 ಗುಣಿಸುವ ಮೂಲಕ \frac{30}{29} ದಿಂದ -2 ಭಾಗಿಸಿ.
x=\frac{29}{15} x=-\frac{29}{15}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.