ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವಿಸ್ತರಿಸು
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. x-1 ಮತ್ತು x+1 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x-1\right)\left(x+1\right) ಆಗಿದೆ. \frac{x+1}{x+1} ಅನ್ನು \frac{3x}{x-1} ಬಾರಿ ಗುಣಿಸಿ. \frac{x-1}{x-1} ಅನ್ನು \frac{x}{x+1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{3x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} ಮತ್ತು \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{3x^{2}+3x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
3x\left(x+1\right)-x\left(x-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
3x^{2}+3x-x^{2}+x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(2x^{2}+4x\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
\frac{x}{x^{2}-1} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} ಗುಣಿಸುವ ಮೂಲಕ \frac{x}{x^{2}-1} ದಿಂದ \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} ಭಾಗಿಸಿ.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x-1\right)\left(x+1\right)}
ಈಗಾಗಲೇ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2\left(x+2\right)
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ x\left(x-1\right)\left(x+1\right) ರದ್ದುಗೊಳಿಸಿ.
2x+4
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ವಿಸ್ತರಿಸಿ.
\frac{\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. x-1 ಮತ್ತು x+1 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು \left(x-1\right)\left(x+1\right) ಆಗಿದೆ. \frac{x+1}{x+1} ಅನ್ನು \frac{3x}{x-1} ಬಾರಿ ಗುಣಿಸಿ. \frac{x-1}{x-1} ಅನ್ನು \frac{x}{x+1} ಬಾರಿ ಗುಣಿಸಿ.
\frac{\frac{3x\left(x+1\right)-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
\frac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} ಮತ್ತು \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{\frac{3x^{2}+3x-x^{2}+x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
3x\left(x+1\right)-x\left(x-1\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{\frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)}}{\frac{x}{x^{2}-1}}
3x^{2}+3x-x^{2}+x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{\left(2x^{2}+4x\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)x}
\frac{x}{x^{2}-1} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} ಗುಣಿಸುವ ಮೂಲಕ \frac{x}{x^{2}-1} ದಿಂದ \frac{2x^{2}+4x}{\left(x-1\right)\left(x+1\right)} ಭಾಗಿಸಿ.
\frac{2x\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x-1\right)\left(x+1\right)}
ಈಗಾಗಲೇ ಅಪವರ್ತನಗೊಳಿಸದ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2\left(x+2\right)
ಗಣಕ ಮತ್ತು ಛೇದ ಎರಡರಲ್ಲೂ x\left(x-1\right)\left(x+1\right) ರದ್ದುಗೊಳಿಸಿ.
2x+4
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ವಿಸ್ತರಿಸಿ.