ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
z ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

z^{2}+27-10z=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 10z ಕಳೆಯಿರಿ.
z^{2}-10z+27=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
z=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 27}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -10 ಮತ್ತು c ಗೆ 27 ಬದಲಿಸಿ.
z=\frac{-\left(-10\right)±\sqrt{100-4\times 27}}{2}
ವರ್ಗ -10.
z=\frac{-\left(-10\right)±\sqrt{100-108}}{2}
27 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{-\left(-10\right)±\sqrt{-8}}{2}
-108 ಗೆ 100 ಸೇರಿಸಿ.
z=\frac{-\left(-10\right)±2\sqrt{2}i}{2}
-8 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z=\frac{10±2\sqrt{2}i}{2}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
z=\frac{10+2\sqrt{2}i}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{10±2\sqrt{2}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{2} ಗೆ 10 ಸೇರಿಸಿ.
z=5+\sqrt{2}i
2 ದಿಂದ 10+2i\sqrt{2} ಭಾಗಿಸಿ.
z=\frac{-2\sqrt{2}i+10}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{10±2\sqrt{2}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 2i\sqrt{2} ಕಳೆಯಿರಿ.
z=-\sqrt{2}i+5
2 ದಿಂದ 10-2i\sqrt{2} ಭಾಗಿಸಿ.
z=5+\sqrt{2}i z=-\sqrt{2}i+5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
z^{2}+27-10z=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 10z ಕಳೆಯಿರಿ.
z^{2}-10z=-27
ಎರಡೂ ಕಡೆಗಳಿಂದ 27 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
z^{2}-10z+\left(-5\right)^{2}=-27+\left(-5\right)^{2}
-5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
z^{2}-10z+25=-27+25
ವರ್ಗ -5.
z^{2}-10z+25=-2
25 ಗೆ -27 ಸೇರಿಸಿ.
\left(z-5\right)^{2}=-2
ಅಪವರ್ತನ z^{2}-10z+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(z-5\right)^{2}}=\sqrt{-2}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z-5=\sqrt{2}i z-5=-\sqrt{2}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
z=5+\sqrt{2}i z=-\sqrt{2}i+5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.