ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

y^{2}-15y+54=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 54 ಸೇರಿಸಿ.
a+b=-15 ab=54
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು y^{2}-15y+54 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-54 -2,-27 -3,-18 -6,-9
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 54 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-54=-55 -2-27=-29 -3-18=-21 -6-9=-15
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-9 b=-6
ಪರಿಹಾರವು -15 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(y-9\right)\left(y-6\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(y+a\right)\left(y+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
y=9 y=6
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, y-9=0 ಮತ್ತು y-6=0 ಪರಿಹರಿಸಿ.
y^{2}-15y+54=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 54 ಸೇರಿಸಿ.
a+b=-15 ab=1\times 54=54
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು y^{2}+ay+by+54 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-54 -2,-27 -3,-18 -6,-9
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 54 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-54=-55 -2-27=-29 -3-18=-21 -6-9=-15
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-9 b=-6
ಪರಿಹಾರವು -15 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(y^{2}-9y\right)+\left(-6y+54\right)
\left(y^{2}-9y\right)+\left(-6y+54\right) ನ ಹಾಗೆ y^{2}-15y+54 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
y\left(y-9\right)-6\left(y-9\right)
ಮೊದಲನೆಯದರಲ್ಲಿ y ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(y-9\right)\left(y-6\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ y-9 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
y=9 y=6
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, y-9=0 ಮತ್ತು y-6=0 ಪರಿಹರಿಸಿ.
y^{2}-15y=-54
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
y^{2}-15y-\left(-54\right)=-54-\left(-54\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 54 ಸೇರಿಸಿ.
y^{2}-15y-\left(-54\right)=0
-54 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
y^{2}-15y+54=0
0 ದಿಂದ -54 ಕಳೆಯಿರಿ.
y=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 54}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -15 ಮತ್ತು c ಗೆ 54 ಬದಲಿಸಿ.
y=\frac{-\left(-15\right)±\sqrt{225-4\times 54}}{2}
ವರ್ಗ -15.
y=\frac{-\left(-15\right)±\sqrt{225-216}}{2}
54 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-15\right)±\sqrt{9}}{2}
-216 ಗೆ 225 ಸೇರಿಸಿ.
y=\frac{-\left(-15\right)±3}{2}
9 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{15±3}{2}
-15 ನ ವಿಲೋಮವು 15 ಆಗಿದೆ.
y=\frac{18}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{15±3}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ಗೆ 15 ಸೇರಿಸಿ.
y=9
2 ದಿಂದ 18 ಭಾಗಿಸಿ.
y=\frac{12}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{15±3}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 15 ದಿಂದ 3 ಕಳೆಯಿರಿ.
y=6
2 ದಿಂದ 12 ಭಾಗಿಸಿ.
y=9 y=6
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y^{2}-15y=-54
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
y^{2}-15y+\left(-\frac{15}{2}\right)^{2}=-54+\left(-\frac{15}{2}\right)^{2}
-\frac{15}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -15 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{15}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}-15y+\frac{225}{4}=-54+\frac{225}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{15}{2} ವರ್ಗಗೊಳಿಸಿ.
y^{2}-15y+\frac{225}{4}=\frac{9}{4}
\frac{225}{4} ಗೆ -54 ಸೇರಿಸಿ.
\left(y-\frac{15}{2}\right)^{2}=\frac{9}{4}
ಅಪವರ್ತನ y^{2}-15y+\frac{225}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y-\frac{15}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y-\frac{15}{2}=\frac{3}{2} y-\frac{15}{2}=-\frac{3}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=9 y=6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{15}{2} ಸೇರಿಸಿ.