ಮೌಲ್ಯಮಾಪನ
x^{4}+3x^{3}+\frac{19x}{3}
ಅಪವರ್ತನ
\frac{x\left(3x^{3}+9x^{2}+19\right)}{3}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{3\left(x^{4}+3x^{3}+3x\right)}{3}+\frac{10x}{3}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{3}{3} ಅನ್ನು x^{4}+3x^{3}+3x ಬಾರಿ ಗುಣಿಸಿ.
\frac{3\left(x^{4}+3x^{3}+3x\right)+10x}{3}
\frac{3\left(x^{4}+3x^{3}+3x\right)}{3} ಮತ್ತು \frac{10x}{3} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{3x^{4}+9x^{3}+9x+10x}{3}
3\left(x^{4}+3x^{3}+3x\right)+10x ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{3x^{4}+9x^{3}+19x}{3}
3x^{4}+9x^{3}+9x+10x ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
\frac{3x^{4}+9x^{3}+10x+9x}{3}
\frac{1}{3} ಅಪವರ್ತನಗೊಳಿಸಿ.
x\left(3x^{3}+9x^{2}+19\right)
3x^{4}+9x^{3}+10x+9x ಪರಿಗಣಿಸಿ. x ಅಪವರ್ತನಗೊಳಿಸಿ.
\frac{x\left(3x^{3}+9x^{2}+19\right)}{3}
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ. ಬಹುಪದೋಕ್ತಿ 3x^{3}+9x^{2}+19 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿಲ್ಲ ಏಕೆಂದರೆ ಅದು ಯಾವುದೇ ತರ್ಕಬದ್ಧ ವರ್ಗಮೂಲಗಳನ್ನು ಹೊಂದಿಲ್ಲ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}