ಅಪವರ್ತನ
\left(x+1\right)\left(x^{4}-x^{3}+x^{2}-x+1\right)\left(x^{20}-x^{15}+x^{10}-x^{5}+1\right)\left(x^{50}-x^{25}+1\right)\left(x^{150}-x^{75}+1\right)
ಮೌಲ್ಯಮಾಪನ
x^{225}+1
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x^{75}+1\right)\left(x^{150}-x^{75}+1\right)
\left(x^{75}\right)^{3}+1^{3} ನ ಹಾಗೆ x^{225}+1 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಘನಗಳ ಮೊತ್ತವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{25}+1\right)\left(x^{50}-x^{25}+1\right)
x^{75}+1 ಪರಿಗಣಿಸಿ. \left(x^{25}\right)^{3}+1^{3} ನ ಹಾಗೆ x^{75}+1 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಘನಗಳ ಮೊತ್ತವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{5}+1\right)\left(x^{20}-x^{15}+x^{10}-x^{5}+1\right)
x^{25}+1 ಪರಿಗಣಿಸಿ. x^{k}+m ರೂಪದಲ್ಲಿ ಒಂದು ಅಪವರ್ತನವನ್ನು ಹುಡುಕಿ, ಇಲ್ಲಿ x^{k} ಎನ್ನುವುದು ಅತ್ಯಧಿಕ ಘಾತ x^{25} ಮೂಲಕ ಏಕಪದೋಕ್ತಿಯನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು m ಎನ್ನುವುದು ಸ್ಥಿರ ಅಪವರ್ತನ 1 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಅಂತಹ ಒಂದು ಅಪವರ್ತನವು x^{5}+1 ಆಗಿದೆ. ಬಹುಪದೋಕ್ತಿಯನ್ನು ಈ ಅಪವರ್ತನದ ಮೂಲಕ ವಿಭಜಿಸುವ ಮೂಲಕ ಅದನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x+1\right)\left(x^{4}-x^{3}+x^{2}-x+1\right)
x^{5}+1 ಪರಿಗಣಿಸಿ. ಭಾಗಲಬ್ಧ ವರ್ಗಮೂಲ ಪ್ರಮೇಯದ ಮೂಲಕ, ಬಹುಪದೋಕ್ತಿಯ ತರ್ಕಬದ್ಧ ರೂಟ್ಗಳು \frac{p}{q} ಸವರೂಪದಲ್ಲಿವೆ, ಇಲ್ಲಿ p ಎನ್ನುವುದು 1 ಸ್ಥಿರ ಪದವನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು q ಎನ್ನುವುದು ಪ್ರಧಾನ ಗುಣಾಂಕ 1 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಅಂತಹ ಒಂದು ವರ್ಗಮೂಲ -1 ಆಗಿದೆ. ಬಹುಪದೋಕ್ತಿಯನ್ನು x+1 ನಿಂದ ಭಾಗಿಸುವ ಮೂಲಕ ಅದನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x^{4}-x^{3}+x^{2}-x+1\right)\left(x+1\right)\left(x^{20}-x^{15}+x^{10}-x^{5}+1\right)\left(x^{50}-x^{25}+1\right)\left(x^{150}-x^{75}+1\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ. ಮುಂದಿನ ಬಹುಪದೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಲಾಗಿಲ್ಲ ಏಕೆಂದರೆ ಅವುಗಳು ಯಾವುದೇ ತರ್ಕಬದ್ಧ ವರ್ಗಮೂಲಗಳನ್ನು ಹೊಂದಿಲ್ಲ: x^{4}-x^{3}+x^{2}-x+1,x^{20}-x^{15}+x^{10}-x^{5}+1,x^{50}-x^{25}+1,x^{150}-x^{75}+1.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}