ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-x^{2}\times 2+1-x^{2}=2x^{2}+4x-x-1
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
-x^{2}+1-x^{2}=2x^{2}+4x-x-1
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2}\times 2 ಕೂಡಿಸಿ.
-2x^{2}+1=2x^{2}+4x-x-1
-2x^{2} ಪಡೆದುಕೊಳ್ಳಲು -x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-2x^{2}+1=2x^{2}+3x-1
3x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು -x ಕೂಡಿಸಿ.
-2x^{2}+1-2x^{2}=3x-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
-4x^{2}+1=3x-1
-4x^{2} ಪಡೆದುಕೊಳ್ಳಲು -2x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
-4x^{2}+1-3x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
-4x^{2}+1-3x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
-4x^{2}+2-3x=0
2 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 1 ಸೇರಿಸಿ.
-4x^{2}-3x+2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -4, b ಗೆ -3 ಮತ್ತು c ಗೆ 2 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
ವರ್ಗ -3.
x=\frac{-\left(-3\right)±\sqrt{9+16\times 2}}{2\left(-4\right)}
-4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2\left(-4\right)}
2 ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{41}}{2\left(-4\right)}
32 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{3±\sqrt{41}}{2\left(-4\right)}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{3±\sqrt{41}}{-8}
-4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{41}+3}{-8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±\sqrt{41}}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{41} ಗೆ 3 ಸೇರಿಸಿ.
x=\frac{-\sqrt{41}-3}{8}
-8 ದಿಂದ 3+\sqrt{41} ಭಾಗಿಸಿ.
x=\frac{3-\sqrt{41}}{-8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±\sqrt{41}}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ \sqrt{41} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{41}-3}{8}
-8 ದಿಂದ 3-\sqrt{41} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{41}-3}{8} x=\frac{\sqrt{41}-3}{8}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-x^{2}\times 2+1-x^{2}=2x^{2}+4x-x-1
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
-x^{2}+1-x^{2}=2x^{2}+4x-x-1
-x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -x^{2}\times 2 ಕೂಡಿಸಿ.
-2x^{2}+1=2x^{2}+4x-x-1
-2x^{2} ಪಡೆದುಕೊಳ್ಳಲು -x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-2x^{2}+1=2x^{2}+3x-1
3x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು -x ಕೂಡಿಸಿ.
-2x^{2}+1-2x^{2}=3x-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
-4x^{2}+1=3x-1
-4x^{2} ಪಡೆದುಕೊಳ್ಳಲು -2x^{2} ಮತ್ತು -2x^{2} ಕೂಡಿಸಿ.
-4x^{2}+1-3x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
-4x^{2}-3x=-1-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
-4x^{2}-3x=-2
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
\frac{-4x^{2}-3x}{-4}=-\frac{2}{-4}
-4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{3}{-4}\right)x=-\frac{2}{-4}
-4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{4}x=-\frac{2}{-4}
-4 ದಿಂದ -3 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{4}x=\frac{1}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{-4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(\frac{3}{8}\right)^{2}
\frac{3}{8} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{4} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{8} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{8} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{64} ಗೆ \frac{1}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{3}{8}\right)^{2}=\frac{41}{64}
ಅಪವರ್ತನ x^{2}+\frac{3}{4}x+\frac{9}{64}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{8}=\frac{\sqrt{41}}{8} x+\frac{3}{8}=-\frac{\sqrt{41}}{8}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{41}-3}{8} x=\frac{-\sqrt{41}-3}{8}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{8} ಕಳೆಯಿರಿ.