x ಪರಿಹರಿಸಿ
x=7\sqrt{2}+8\approx 17.899494937
x=8-7\sqrt{2}\approx -1.899494937
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}-34-16x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 16x ಕಳೆಯಿರಿ.
x^{2}-16x-34=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-34\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -16 ಮತ್ತು c ಗೆ -34 ಬದಲಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-34\right)}}{2}
ವರ್ಗ -16.
x=\frac{-\left(-16\right)±\sqrt{256+136}}{2}
-34 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{392}}{2}
136 ಗೆ 256 ಸೇರಿಸಿ.
x=\frac{-\left(-16\right)±14\sqrt{2}}{2}
392 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{16±14\sqrt{2}}{2}
-16 ನ ವಿಲೋಮವು 16 ಆಗಿದೆ.
x=\frac{14\sqrt{2}+16}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{16±14\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 14\sqrt{2} ಗೆ 16 ಸೇರಿಸಿ.
x=7\sqrt{2}+8
2 ದಿಂದ 16+14\sqrt{2} ಭಾಗಿಸಿ.
x=\frac{16-14\sqrt{2}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{16±14\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 16 ದಿಂದ 14\sqrt{2} ಕಳೆಯಿರಿ.
x=8-7\sqrt{2}
2 ದಿಂದ 16-14\sqrt{2} ಭಾಗಿಸಿ.
x=7\sqrt{2}+8 x=8-7\sqrt{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-34-16x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 16x ಕಳೆಯಿರಿ.
x^{2}-16x=34
ಎರಡೂ ಬದಿಗಳಿಗೆ 34 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
x^{2}-16x+\left(-8\right)^{2}=34+\left(-8\right)^{2}
-8 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -16 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -8 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-16x+64=34+64
ವರ್ಗ -8.
x^{2}-16x+64=98
64 ಗೆ 34 ಸೇರಿಸಿ.
\left(x-8\right)^{2}=98
ಅಪವರ್ತನ x^{2}-16x+64. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-8\right)^{2}}=\sqrt{98}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-8=7\sqrt{2} x-8=-7\sqrt{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=7\sqrt{2}+8 x=8-7\sqrt{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 8 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}