ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}-\left(7+x\right)\left(\frac{7+x}{2}+x\right)=22
2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x^{2}-\left(7\times \frac{7+x}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
\frac{7+x}{2}+x ದಿಂದ 7+x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 7\times \frac{7+x}{2} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+\frac{x\left(7+x\right)}{2}+x^{2}\right)=22
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ x\times \frac{7+x}{2} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
2x^{2}-\left(\frac{7\left(7+x\right)+x\left(7+x\right)}{2}+7x+x^{2}\right)=22
\frac{7\left(7+x\right)}{2} ಮತ್ತು \frac{x\left(7+x\right)}{2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
2x^{2}-\left(\frac{49+7x+7x+x^{2}}{2}+7x+x^{2}\right)=22
7\left(7+x\right)+x\left(7+x\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
2x^{2}-\left(\frac{49+14x+x^{2}}{2}+7x+x^{2}\right)=22
49+7x+7x+x^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
2x^{2}-\frac{49+14x+x^{2}}{2}-7x-x^{2}=22
\frac{49+14x+x^{2}}{2}+7x+x^{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
x^{2}-\frac{49+14x+x^{2}}{2}-7x=22
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
x^{2}-\left(\frac{49}{2}+7x+\frac{1}{2}x^{2}\right)-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} ಪಡೆಯಲು 49+14x+x^{2} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
x^{2}-\frac{49}{2}-7x-\frac{1}{2}x^{2}-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{1}{2}x^{2}-\frac{49}{2}-7x-7x=22
\frac{1}{2}x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -\frac{1}{2}x^{2} ಕೂಡಿಸಿ.
\frac{1}{2}x^{2}-\frac{49}{2}-14x=22
-14x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು -7x ಕೂಡಿಸಿ.
\frac{1}{2}x^{2}-\frac{49}{2}-14x-22=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 22 ಕಳೆಯಿರಿ.
\frac{1}{2}x^{2}-\frac{93}{2}-14x=0
-\frac{93}{2} ಪಡೆದುಕೊಳ್ಳಲು -\frac{49}{2} ದಿಂದ 22 ಕಳೆಯಿರಿ.
\frac{1}{2}x^{2}-14x-\frac{93}{2}=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times \frac{1}{2}\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \frac{1}{2}, b ಗೆ -14 ಮತ್ತು c ಗೆ -\frac{93}{2} ಬದಲಿಸಿ.
x=\frac{-\left(-14\right)±\sqrt{196-4\times \frac{1}{2}\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
ವರ್ಗ -14.
x=\frac{-\left(-14\right)±\sqrt{196-2\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
\frac{1}{2} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-14\right)±\sqrt{196+93}}{2\times \frac{1}{2}}
-\frac{93}{2} ಅನ್ನು -2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-14\right)±\sqrt{289}}{2\times \frac{1}{2}}
93 ಗೆ 196 ಸೇರಿಸಿ.
x=\frac{-\left(-14\right)±17}{2\times \frac{1}{2}}
289 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{14±17}{2\times \frac{1}{2}}
-14 ನ ವಿಲೋಮವು 14 ಆಗಿದೆ.
x=\frac{14±17}{1}
\frac{1}{2} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{31}{1}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{14±17}{1} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ಗೆ 14 ಸೇರಿಸಿ.
x=31
1 ದಿಂದ 31 ಭಾಗಿಸಿ.
x=-\frac{3}{1}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{14±17}{1} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 14 ದಿಂದ 17 ಕಳೆಯಿರಿ.
x=-3
1 ದಿಂದ -3 ಭಾಗಿಸಿ.
x=31 x=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-\left(7+x\right)\left(\frac{7+x}{2}+x\right)=22
2 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x^{2}-\left(7\times \frac{7+x}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
\frac{7+x}{2}+x ದಿಂದ 7+x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 7\times \frac{7+x}{2} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+\frac{x\left(7+x\right)}{2}+x^{2}\right)=22
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ x\times \frac{7+x}{2} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
2x^{2}-\left(\frac{7\left(7+x\right)+x\left(7+x\right)}{2}+7x+x^{2}\right)=22
\frac{7\left(7+x\right)}{2} ಮತ್ತು \frac{x\left(7+x\right)}{2} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
2x^{2}-\left(\frac{49+7x+7x+x^{2}}{2}+7x+x^{2}\right)=22
7\left(7+x\right)+x\left(7+x\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
2x^{2}-\left(\frac{49+14x+x^{2}}{2}+7x+x^{2}\right)=22
49+7x+7x+x^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
2x^{2}-\frac{49+14x+x^{2}}{2}-7x-x^{2}=22
\frac{49+14x+x^{2}}{2}+7x+x^{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
x^{2}-\frac{49+14x+x^{2}}{2}-7x=22
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
x^{2}-\left(\frac{49}{2}+7x+\frac{1}{2}x^{2}\right)-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} ಪಡೆಯಲು 49+14x+x^{2} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
x^{2}-\frac{49}{2}-7x-\frac{1}{2}x^{2}-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\frac{1}{2}x^{2}-\frac{49}{2}-7x-7x=22
\frac{1}{2}x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -\frac{1}{2}x^{2} ಕೂಡಿಸಿ.
\frac{1}{2}x^{2}-\frac{49}{2}-14x=22
-14x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು -7x ಕೂಡಿಸಿ.
\frac{1}{2}x^{2}-14x=22+\frac{49}{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ \frac{49}{2} ಸೇರಿಸಿ.
\frac{1}{2}x^{2}-14x=\frac{93}{2}
\frac{93}{2} ಪಡೆದುಕೊಳ್ಳಲು 22 ಮತ್ತು \frac{49}{2} ಸೇರಿಸಿ.
\frac{\frac{1}{2}x^{2}-14x}{\frac{1}{2}}=\frac{\frac{93}{2}}{\frac{1}{2}}
2 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}+\left(-\frac{14}{\frac{1}{2}}\right)x=\frac{\frac{93}{2}}{\frac{1}{2}}
\frac{1}{2} ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \frac{1}{2} ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-28x=\frac{\frac{93}{2}}{\frac{1}{2}}
\frac{1}{2} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -14 ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{2} ದಿಂದ -14 ಭಾಗಿಸಿ.
x^{2}-28x=93
\frac{1}{2} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{93}{2} ಗುಣಿಸುವ ಮೂಲಕ \frac{1}{2} ದಿಂದ \frac{93}{2} ಭಾಗಿಸಿ.
x^{2}-28x+\left(-14\right)^{2}=93+\left(-14\right)^{2}
-14 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -28 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -14 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-28x+196=93+196
ವರ್ಗ -14.
x^{2}-28x+196=289
196 ಗೆ 93 ಸೇರಿಸಿ.
\left(x-14\right)^{2}=289
ಅಪವರ್ತನ x^{2}-28x+196. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-14\right)^{2}}=\sqrt{289}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-14=17 x-14=-17
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=31 x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 14 ಸೇರಿಸಿ.