ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-\frac{5}{2}x-\frac{1}{2}=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -\frac{5}{2} ಮತ್ತು c ಗೆ -\frac{1}{2} ಬದಲಿಸಿ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\left(-\frac{1}{2}\right)}}{2}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}+2}}{2}
-\frac{1}{2} ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{33}{4}}}{2}
2 ಗೆ \frac{25}{4} ಸೇರಿಸಿ.
x=\frac{-\left(-\frac{5}{2}\right)±\frac{\sqrt{33}}{2}}{2}
\frac{33}{4} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2}
-\frac{5}{2} ನ ವಿಲೋಮವು \frac{5}{2} ಆಗಿದೆ.
x=\frac{\sqrt{33}+5}{2\times 2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{33}}{2} ಗೆ \frac{5}{2} ಸೇರಿಸಿ.
x=\frac{\sqrt{33}+5}{4}
2 ದಿಂದ \frac{5+\sqrt{33}}{2} ಭಾಗಿಸಿ.
x=\frac{5-\sqrt{33}}{2\times 2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{5}{2}±\frac{\sqrt{33}}{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{5}{2} ದಿಂದ \frac{\sqrt{33}}{2} ಕಳೆಯಿರಿ.
x=\frac{5-\sqrt{33}}{4}
2 ದಿಂದ \frac{5-\sqrt{33}}{2} ಭಾಗಿಸಿ.
x=\frac{\sqrt{33}+5}{4} x=\frac{5-\sqrt{33}}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-\frac{5}{2}x-\frac{1}{2}=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}-\frac{5}{2}x-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{2} ಸೇರಿಸಿ.
x^{2}-\frac{5}{2}x=-\left(-\frac{1}{2}\right)
-\frac{1}{2} ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}-\frac{5}{2}x=\frac{1}{2}
0 ದಿಂದ -\frac{1}{2} ಕಳೆಯಿರಿ.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{5}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{2}+\frac{25}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{33}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{16} ಗೆ \frac{1}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{5}{4}\right)^{2}=\frac{33}{16}
ಅಪವರ್ತನ x^{2}-\frac{5}{2}x+\frac{25}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{4}=\frac{\sqrt{33}}{4} x-\frac{5}{4}=-\frac{\sqrt{33}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{33}+5}{4} x=\frac{5-\sqrt{33}}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{4} ಸೇರಿಸಿ.