ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}+54x-5=500
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x^{2}+54x-5-500=500-500
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 500 ಕಳೆಯಿರಿ.
x^{2}+54x-5-500=0
500 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+54x-505=0
-5 ದಿಂದ 500 ಕಳೆಯಿರಿ.
x=\frac{-54±\sqrt{54^{2}-4\left(-505\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 54 ಮತ್ತು c ಗೆ -505 ಬದಲಿಸಿ.
x=\frac{-54±\sqrt{2916-4\left(-505\right)}}{2}
ವರ್ಗ 54.
x=\frac{-54±\sqrt{2916+2020}}{2}
-505 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-54±\sqrt{4936}}{2}
2020 ಗೆ 2916 ಸೇರಿಸಿ.
x=\frac{-54±2\sqrt{1234}}{2}
4936 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{1234}-54}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-54±2\sqrt{1234}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{1234} ಗೆ -54 ಸೇರಿಸಿ.
x=\sqrt{1234}-27
2 ದಿಂದ -54+2\sqrt{1234} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{1234}-54}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-54±2\sqrt{1234}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -54 ದಿಂದ 2\sqrt{1234} ಕಳೆಯಿರಿ.
x=-\sqrt{1234}-27
2 ದಿಂದ -54-2\sqrt{1234} ಭಾಗಿಸಿ.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+54x-5=500
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+54x-5-\left(-5\right)=500-\left(-5\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.
x^{2}+54x=500-\left(-5\right)
-5 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+54x=505
500 ದಿಂದ -5 ಕಳೆಯಿರಿ.
x^{2}+54x+27^{2}=505+27^{2}
27 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 54 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 27 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+54x+729=505+729
ವರ್ಗ 27.
x^{2}+54x+729=1234
729 ಗೆ 505 ಸೇರಿಸಿ.
\left(x+27\right)^{2}=1234
ಅಪವರ್ತನ x^{2}+54x+729. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+27\right)^{2}}=\sqrt{1234}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+27=\sqrt{1234} x+27=-\sqrt{1234}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 27 ಕಳೆಯಿರಿ.
x^{2}+54x-5=500
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x^{2}+54x-5-500=500-500
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 500 ಕಳೆಯಿರಿ.
x^{2}+54x-5-500=0
500 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+54x-505=0
-5 ದಿಂದ 500 ಕಳೆಯಿರಿ.
x=\frac{-54±\sqrt{54^{2}-4\left(-505\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 54 ಮತ್ತು c ಗೆ -505 ಬದಲಿಸಿ.
x=\frac{-54±\sqrt{2916-4\left(-505\right)}}{2}
ವರ್ಗ 54.
x=\frac{-54±\sqrt{2916+2020}}{2}
-505 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-54±\sqrt{4936}}{2}
2020 ಗೆ 2916 ಸೇರಿಸಿ.
x=\frac{-54±2\sqrt{1234}}{2}
4936 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{1234}-54}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-54±2\sqrt{1234}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{1234} ಗೆ -54 ಸೇರಿಸಿ.
x=\sqrt{1234}-27
2 ದಿಂದ -54+2\sqrt{1234} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{1234}-54}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-54±2\sqrt{1234}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -54 ದಿಂದ 2\sqrt{1234} ಕಳೆಯಿರಿ.
x=-\sqrt{1234}-27
2 ದಿಂದ -54-2\sqrt{1234} ಭಾಗಿಸಿ.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+54x-5=500
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+54x-5-\left(-5\right)=500-\left(-5\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.
x^{2}+54x=500-\left(-5\right)
-5 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+54x=505
500 ದಿಂದ -5 ಕಳೆಯಿರಿ.
x^{2}+54x+27^{2}=505+27^{2}
27 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 54 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 27 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+54x+729=505+729
ವರ್ಗ 27.
x^{2}+54x+729=1234
729 ಗೆ 505 ಸೇರಿಸಿ.
\left(x+27\right)^{2}=1234
ಅಪವರ್ತನ x^{2}+54x+729. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+27\right)^{2}}=\sqrt{1234}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+27=\sqrt{1234} x+27=-\sqrt{1234}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{1234}-27 x=-\sqrt{1234}-27
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 27 ಕಳೆಯಿರಿ.