x ಪರಿಹರಿಸಿ
x=-5
x=-1
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}+4+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+4+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+4+6x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
x^{2}+5+6x=0
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
x^{2}+6x+5=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=6 ab=5
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು x^{2}+6x+5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=1 b=5
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(x+1\right)\left(x+5\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(x+a\right)\left(x+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x=-1 x=-5
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x+1=0 ಮತ್ತು x+5=0 ಪರಿಹರಿಸಿ.
x^{2}+4+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+4+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+4+6x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
x^{2}+5+6x=0
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
x^{2}+6x+5=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=6 ab=1\times 5=5
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx+5 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=1 b=5
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(x^{2}+x\right)+\left(5x+5\right)
\left(x^{2}+x\right)+\left(5x+5\right) ನ ಹಾಗೆ x^{2}+6x+5 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x+1\right)+5\left(x+1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x+1\right)\left(x+5\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=-1 x=-5
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x+1=0 ಮತ್ತು x+5=0 ಪರಿಹರಿಸಿ.
x^{2}+4+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+4+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+4+6x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
x^{2}+5+6x=0
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
x^{2}+6x+5=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 6 ಮತ್ತು c ಗೆ 5 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\times 5}}{2}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36-20}}{2}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{16}}{2}
-20 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±4}{2}
16 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=-\frac{2}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±4}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ಗೆ -6 ಸೇರಿಸಿ.
x=-1
2 ದಿಂದ -2 ಭಾಗಿಸಿ.
x=-\frac{10}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±4}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x=-5
2 ದಿಂದ -10 ಭಾಗಿಸಿ.
x=-1 x=-5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+4+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+4+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+6x=-1-4
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
x^{2}+6x=-5
-5 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 4 ಕಳೆಯಿರಿ.
x^{2}+6x+3^{2}=-5+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+6x+9=-5+9
ವರ್ಗ 3.
x^{2}+6x+9=4
9 ಗೆ -5 ಸೇರಿಸಿ.
\left(x+3\right)^{2}=4
ಅಪವರ್ತನ x^{2}+6x+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+3\right)^{2}}=\sqrt{4}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+3=2 x+3=-2
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-1 x=-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}