x ಪರಿಹರಿಸಿ
x=2
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{\sqrt{2}}{2}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\frac{\sqrt{2}x}{2} ಅನ್ನು ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಲು, ಗಣಕ ಮತ್ತು ಅಪವರ್ತ್ಯಗಳೆರಡನ್ನೂ ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಿ ತದನಂತರ ಭಾಗಿಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
4 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
8 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 2 ಗುಣಿಸಿ.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\left(\sqrt{2}x\right)^{2} ವಿಸ್ತರಿಸಿ.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{1}{2}x^{2} ಪಡೆಯಲು 4 ರಿಂದ 2x^{2} ವಿಭಾಗಿಸಿ.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
1 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು \frac{1}{2} ಗುಣಿಸಿ.
x^{2}+x^{2}-4x\times 2+16=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+x^{2}-8x+16=8
-8 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 2 ಗುಣಿಸಿ.
2x^{2}-8x+16=8
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}-8x+16-8=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
2x^{2}-8x+8=0
8 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 8 ಕಳೆಯಿರಿ.
x^{2}-4x+4=0
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a+b=-4 ab=1\times 4=4
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx+4 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-4 -2,-2
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 4 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-4=-5 -2-2=-4
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=-2
ಪರಿಹಾರವು -4 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-2x\right)+\left(-2x+4\right)
\left(x^{2}-2x\right)+\left(-2x+4\right) ನ ಹಾಗೆ x^{2}-4x+4 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-2\right)-2\left(x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-2\right)\left(x-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-2\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
x=2
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, x-2=0 ಪರಿಹರಿಸಿ.
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{\sqrt{2}}{2}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\frac{\sqrt{2}x}{2} ಅನ್ನು ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಲು, ಗಣಕ ಮತ್ತು ಅಪವರ್ತ್ಯಗಳೆರಡನ್ನೂ ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಿ ತದನಂತರ ಭಾಗಿಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
4 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
8 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 2 ಗುಣಿಸಿ.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\left(\sqrt{2}x\right)^{2} ವಿಸ್ತರಿಸಿ.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{1}{2}x^{2} ಪಡೆಯಲು 4 ರಿಂದ 2x^{2} ವಿಭಾಗಿಸಿ.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
1 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು \frac{1}{2} ಗುಣಿಸಿ.
x^{2}+x^{2}-4x\times 2+16=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+x^{2}-8x+16=8
-8 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 2 ಗುಣಿಸಿ.
2x^{2}-8x+16=8
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}-8x+16-8=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
2x^{2}-8x+8=0
8 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 8 ಕಳೆಯಿರಿ.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -8 ಮತ್ತು c ಗೆ 8 ಬದಲಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
ವರ್ಗ -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
8 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
-64 ಗೆ 64 ಸೇರಿಸಿ.
x=-\frac{-8}{2\times 2}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{8}{2\times 2}
-8 ನ ವಿಲೋಮವು 8 ಆಗಿದೆ.
x=\frac{8}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=2
4 ದಿಂದ 8 ಭಾಗಿಸಿ.
x^{2}+2\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2}=8
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{\sqrt{2}}{2}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
x^{2}+2\left(\left(\frac{\sqrt{2}x}{2}\right)^{2}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\left(\frac{\sqrt{2}x}{2}-2\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4\times \frac{\sqrt{2}x}{2}\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
\frac{\sqrt{2}x}{2} ಅನ್ನು ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಲು, ಗಣಕ ಮತ್ತು ಅಪವರ್ತ್ಯಗಳೆರಡನ್ನೂ ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಿ ತದನಂತರ ಭಾಗಿಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)=8
4 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+4\times 2\right)=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+2\left(\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8\right)=8
8 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 2 ಗುಣಿಸಿ.
x^{2}+2\times \frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{\left(\sqrt{2}x\right)^{2}}{2^{2}}-2\sqrt{2}x\sqrt{2}+8 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}+2\times \frac{\left(\sqrt{2}\right)^{2}x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\left(\sqrt{2}x\right)^{2} ವಿಸ್ತರಿಸಿ.
x^{2}+2\times \frac{2x^{2}}{2^{2}}-4x\left(\sqrt{2}\right)^{2}+16=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+2\times \frac{2x^{2}}{4}-4x\left(\sqrt{2}\right)^{2}+16=8
2 ನ ಘಾತಕ್ಕೆ 2 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 4 ಪಡೆಯಿರಿ.
x^{2}+2\times \frac{1}{2}x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
\frac{1}{2}x^{2} ಪಡೆಯಲು 4 ರಿಂದ 2x^{2} ವಿಭಾಗಿಸಿ.
x^{2}+x^{2}-4x\left(\sqrt{2}\right)^{2}+16=8
1 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು \frac{1}{2} ಗುಣಿಸಿ.
x^{2}+x^{2}-4x\times 2+16=8
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
x^{2}+x^{2}-8x+16=8
-8 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 2 ಗುಣಿಸಿ.
2x^{2}-8x+16=8
2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು x^{2} ಕೂಡಿಸಿ.
2x^{2}-8x=8-16
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
2x^{2}-8x=-8
-8 ಪಡೆದುಕೊಳ್ಳಲು 8 ದಿಂದ 16 ಕಳೆಯಿರಿ.
\frac{2x^{2}-8x}{2}=-\frac{8}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{8}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-4x=-\frac{8}{2}
2 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}-4x=-4
2 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-4x+4=-4+4
ವರ್ಗ -2.
x^{2}-4x+4=0
4 ಗೆ -4 ಸೇರಿಸಿ.
\left(x-2\right)^{2}=0
ಅಪವರ್ತನ x^{2}-4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-2=0 x-2=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2 x=2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
x=2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}