x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\sqrt{775933}-869\approx 11.870592085
x=-\left(\sqrt{775933}+869\right)\approx -1749.870592085
x ಪರಿಹರಿಸಿ
x=\sqrt{775933}-869\approx 11.870592085
x=-\sqrt{775933}-869\approx -1749.870592085
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}+1738x-20772=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-1738±\sqrt{1738^{2}-4\left(-20772\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 1738 ಮತ್ತು c ಗೆ -20772 ಬದಲಿಸಿ.
x=\frac{-1738±\sqrt{3020644-4\left(-20772\right)}}{2}
ವರ್ಗ 1738.
x=\frac{-1738±\sqrt{3020644+83088}}{2}
-20772 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1738±\sqrt{3103732}}{2}
83088 ಗೆ 3020644 ಸೇರಿಸಿ.
x=\frac{-1738±2\sqrt{775933}}{2}
3103732 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{775933}-1738}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1738±2\sqrt{775933}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{775933} ಗೆ -1738 ಸೇರಿಸಿ.
x=\sqrt{775933}-869
2 ದಿಂದ -1738+2\sqrt{775933} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{775933}-1738}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1738±2\sqrt{775933}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1738 ದಿಂದ 2\sqrt{775933} ಕಳೆಯಿರಿ.
x=-\sqrt{775933}-869
2 ದಿಂದ -1738-2\sqrt{775933} ಭಾಗಿಸಿ.
x=\sqrt{775933}-869 x=-\sqrt{775933}-869
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+1738x-20772=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+1738x-20772-\left(-20772\right)=-\left(-20772\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 20772 ಸೇರಿಸಿ.
x^{2}+1738x=-\left(-20772\right)
-20772 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+1738x=20772
0 ದಿಂದ -20772 ಕಳೆಯಿರಿ.
x^{2}+1738x+869^{2}=20772+869^{2}
869 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 1738 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 869 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+1738x+755161=20772+755161
ವರ್ಗ 869.
x^{2}+1738x+755161=775933
755161 ಗೆ 20772 ಸೇರಿಸಿ.
\left(x+869\right)^{2}=775933
ಅಪವರ್ತನ x^{2}+1738x+755161. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+869\right)^{2}}=\sqrt{775933}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+869=\sqrt{775933} x+869=-\sqrt{775933}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{775933}-869 x=-\sqrt{775933}-869
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 869 ಕಳೆಯಿರಿ.
x^{2}+1738x-20772=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-1738±\sqrt{1738^{2}-4\left(-20772\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 1738 ಮತ್ತು c ಗೆ -20772 ಬದಲಿಸಿ.
x=\frac{-1738±\sqrt{3020644-4\left(-20772\right)}}{2}
ವರ್ಗ 1738.
x=\frac{-1738±\sqrt{3020644+83088}}{2}
-20772 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1738±\sqrt{3103732}}{2}
83088 ಗೆ 3020644 ಸೇರಿಸಿ.
x=\frac{-1738±2\sqrt{775933}}{2}
3103732 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{775933}-1738}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1738±2\sqrt{775933}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{775933} ಗೆ -1738 ಸೇರಿಸಿ.
x=\sqrt{775933}-869
2 ದಿಂದ -1738+2\sqrt{775933} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{775933}-1738}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1738±2\sqrt{775933}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1738 ದಿಂದ 2\sqrt{775933} ಕಳೆಯಿರಿ.
x=-\sqrt{775933}-869
2 ದಿಂದ -1738-2\sqrt{775933} ಭಾಗಿಸಿ.
x=\sqrt{775933}-869 x=-\sqrt{775933}-869
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+1738x-20772=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+1738x-20772-\left(-20772\right)=-\left(-20772\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 20772 ಸೇರಿಸಿ.
x^{2}+1738x=-\left(-20772\right)
-20772 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+1738x=20772
0 ದಿಂದ -20772 ಕಳೆಯಿರಿ.
x^{2}+1738x+869^{2}=20772+869^{2}
869 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 1738 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 869 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+1738x+755161=20772+755161
ವರ್ಗ 869.
x^{2}+1738x+755161=775933
755161 ಗೆ 20772 ಸೇರಿಸಿ.
\left(x+869\right)^{2}=775933
ಅಪವರ್ತನ x^{2}+1738x+755161. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+869\right)^{2}}=\sqrt{775933}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+869=\sqrt{775933} x+869=-\sqrt{775933}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{775933}-869 x=-\sqrt{775933}-869
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 869 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}