ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image
ರಸಪ್ರಶ್ನೆ
Quadratic Equation

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=-6 ab=-7
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು t^{2}-6t-7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=-7 b=1
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(t-7\right)\left(t+1\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(t+a\right)\left(t+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
t=7 t=-1
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, t-7=0 ಮತ್ತು t+1=0 ಪರಿಹರಿಸಿ.
a+b=-6 ab=1\left(-7\right)=-7
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು t^{2}+at+bt-7 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=-7 b=1
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(t^{2}-7t\right)+\left(t-7\right)
\left(t^{2}-7t\right)+\left(t-7\right) ನ ಹಾಗೆ t^{2}-6t-7 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
t\left(t-7\right)+t-7
t^{2}-7t ರಲ್ಲಿ t ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(t-7\right)\left(t+1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ t-7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
t=7 t=-1
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, t-7=0 ಮತ್ತು t+1=0 ಪರಿಹರಿಸಿ.
t^{2}-6t-7=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-7\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -6 ಮತ್ತು c ಗೆ -7 ಬದಲಿಸಿ.
t=\frac{-\left(-6\right)±\sqrt{36-4\left(-7\right)}}{2}
ವರ್ಗ -6.
t=\frac{-\left(-6\right)±\sqrt{36+28}}{2}
-7 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-\left(-6\right)±\sqrt{64}}{2}
28 ಗೆ 36 ಸೇರಿಸಿ.
t=\frac{-\left(-6\right)±8}{2}
64 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{6±8}{2}
-6 ನ ವಿಲೋಮವು 6 ಆಗಿದೆ.
t=\frac{14}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{6±8}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ಗೆ 6 ಸೇರಿಸಿ.
t=7
2 ದಿಂದ 14 ಭಾಗಿಸಿ.
t=-\frac{2}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{6±8}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ದಿಂದ 8 ಕಳೆಯಿರಿ.
t=-1
2 ದಿಂದ -2 ಭಾಗಿಸಿ.
t=7 t=-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
t^{2}-6t-7=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
t^{2}-6t-7-\left(-7\right)=-\left(-7\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7 ಸೇರಿಸಿ.
t^{2}-6t=-\left(-7\right)
-7 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
t^{2}-6t=7
0 ದಿಂದ -7 ಕಳೆಯಿರಿ.
t^{2}-6t+\left(-3\right)^{2}=7+\left(-3\right)^{2}
-3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}-6t+9=7+9
ವರ್ಗ -3.
t^{2}-6t+9=16
9 ಗೆ 7 ಸೇರಿಸಿ.
\left(t-3\right)^{2}=16
ಅಪವರ್ತನ t^{2}-6t+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t-3\right)^{2}}=\sqrt{16}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t-3=4 t-3=-4
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=7 t=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.