ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
p ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

p^{2}-3p+3=175
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
p^{2}-3p+3-175=175-175
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 175 ಕಳೆಯಿರಿ.
p^{2}-3p+3-175=0
175 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
p^{2}-3p-172=0
3 ದಿಂದ 175 ಕಳೆಯಿರಿ.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-172\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -3 ಮತ್ತು c ಗೆ -172 ಬದಲಿಸಿ.
p=\frac{-\left(-3\right)±\sqrt{9-4\left(-172\right)}}{2}
ವರ್ಗ -3.
p=\frac{-\left(-3\right)±\sqrt{9+688}}{2}
-172 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{-\left(-3\right)±\sqrt{697}}{2}
688 ಗೆ 9 ಸೇರಿಸಿ.
p=\frac{3±\sqrt{697}}{2}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
p=\frac{\sqrt{697}+3}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ p=\frac{3±\sqrt{697}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{697} ಗೆ 3 ಸೇರಿಸಿ.
p=\frac{3-\sqrt{697}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ p=\frac{3±\sqrt{697}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ \sqrt{697} ಕಳೆಯಿರಿ.
p=\frac{\sqrt{697}+3}{2} p=\frac{3-\sqrt{697}}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
p^{2}-3p+3=175
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
p^{2}-3p+3-3=175-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
p^{2}-3p=175-3
3 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
p^{2}-3p=172
175 ದಿಂದ 3 ಕಳೆಯಿರಿ.
p^{2}-3p+\left(-\frac{3}{2}\right)^{2}=172+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
p^{2}-3p+\frac{9}{4}=172+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
p^{2}-3p+\frac{9}{4}=\frac{697}{4}
\frac{9}{4} ಗೆ 172 ಸೇರಿಸಿ.
\left(p-\frac{3}{2}\right)^{2}=\frac{697}{4}
ಅಪವರ್ತನ p^{2}-3p+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(p-\frac{3}{2}\right)^{2}}=\sqrt{\frac{697}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
p-\frac{3}{2}=\frac{\sqrt{697}}{2} p-\frac{3}{2}=-\frac{\sqrt{697}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
p=\frac{\sqrt{697}+3}{2} p=\frac{3-\sqrt{697}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.