ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

36=x\left(x-3\right)
2 ನ ಘಾತಕ್ಕೆ 6 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 36 ಪಡೆಯಿರಿ.
36=x^{2}-3x
x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3x=36
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}-3x-36=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 36 ಕಳೆಯಿರಿ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-36\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -3 ಮತ್ತು c ಗೆ -36 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-36\right)}}{2}
ವರ್ಗ -3.
x=\frac{-\left(-3\right)±\sqrt{9+144}}{2}
-36 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{153}}{2}
144 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-\left(-3\right)±3\sqrt{17}}{2}
153 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{3±3\sqrt{17}}{2}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{3\sqrt{17}+3}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±3\sqrt{17}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3\sqrt{17} ಗೆ 3 ಸೇರಿಸಿ.
x=\frac{3-3\sqrt{17}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±3\sqrt{17}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ 3\sqrt{17} ಕಳೆಯಿರಿ.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
36=x\left(x-3\right)
2 ನ ಘಾತಕ್ಕೆ 6 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 36 ಪಡೆಯಿರಿ.
36=x^{2}-3x
x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3x=36
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=36+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-3x+\frac{9}{4}=36+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-3x+\frac{9}{4}=\frac{153}{4}
\frac{9}{4} ಗೆ 36 ಸೇರಿಸಿ.
\left(x-\frac{3}{2}\right)^{2}=\frac{153}{4}
ಅಪವರ್ತನ x^{2}-3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{2}=\frac{3\sqrt{17}}{2} x-\frac{3}{2}=-\frac{3\sqrt{17}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{3\sqrt{17}+3}{2} x=\frac{3-3\sqrt{17}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.