x ಪರಿಹರಿಸಿ
x=\frac{x_{2}+6}{5}
x_2 ಪರಿಹರಿಸಿ
x_{2}=5x-6
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=-\frac{2\pi n_{1}i}{5\ln(5)}+\frac{x_{2}}{5}+\frac{6}{5}
n_{1}\in \mathrm{Z}
x_2 ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x_{2}=\frac{2\pi n_{1}i}{\ln(5)}+5x-6
n_{1}\in \mathrm{Z}
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Algebra
{ 5 }^{ x2-5x+6 } =1
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5^{-5x+x_{2}+6}=1
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು ಘಾತಾಂಕಗಳು ಮತ್ತು ಕ್ರಮಾವಳಿಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\log(5^{-5x+x_{2}+6})=\log(1)
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ಕ್ರಮಾವಳಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\left(-5x+x_{2}+6\right)\log(5)=\log(1)
ಪವರ್ಗೆ ಹೆಚ್ಚಿಸಲಾದ ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯು ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯ ಪವರ್ ಸಮಯವಾಗಿರುತ್ತದೆ.
-5x+x_{2}+6=\frac{\log(1)}{\log(5)}
\log(5) ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-5x+x_{2}+6=\log_{5}\left(1\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) ಮೂಲ ಸೂತ್ರ ಬದಲಾಯಿಸುವ ಮೂಲಕ.
-5x=-\left(x_{2}+6\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ x_{2}+6 ಕಳೆಯಿರಿ.
x=-\frac{x_{2}+6}{-5}
-5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
5^{x_{2}+6-5x}=1
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು ಘಾತಾಂಕಗಳು ಮತ್ತು ಕ್ರಮಾವಳಿಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\log(5^{x_{2}+6-5x})=\log(1)
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ಕ್ರಮಾವಳಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\left(x_{2}+6-5x\right)\log(5)=\log(1)
ಪವರ್ಗೆ ಹೆಚ್ಚಿಸಲಾದ ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯು ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯ ಪವರ್ ಸಮಯವಾಗಿರುತ್ತದೆ.
x_{2}+6-5x=\frac{\log(1)}{\log(5)}
\log(5) ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x_{2}+6-5x=\log_{5}\left(1\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) ಮೂಲ ಸೂತ್ರ ಬದಲಾಯಿಸುವ ಮೂಲಕ.
x_{2}=-\left(6-5x\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ -5x+6 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}