x ಪರಿಹರಿಸಿ
x=2
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3^{-2x+8}=81
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು ಘಾತಾಂಕಗಳು ಮತ್ತು ಕ್ರಮಾವಳಿಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
\log(3^{-2x+8})=\log(81)
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ಕ್ರಮಾವಳಿಯನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\left(-2x+8\right)\log(3)=\log(81)
ಪವರ್ಗೆ ಹೆಚ್ಚಿಸಲಾದ ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯು ಸಂಖ್ಯೆಯ ಕ್ರಮಾವಳಿಯ ಪವರ್ ಸಮಯವಾಗಿರುತ್ತದೆ.
-2x+8=\frac{\log(81)}{\log(3)}
\log(3) ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
-2x+8=\log_{3}\left(81\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) ಮೂಲ ಸೂತ್ರ ಬದಲಾಯಿಸುವ ಮೂಲಕ.
-2x=4-8
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
x=-\frac{4}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}