ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-20x+100=700-10x
70-x ದಿಂದ 10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-20x+100-700=-10x
ಎರಡೂ ಕಡೆಗಳಿಂದ 700 ಕಳೆಯಿರಿ.
x^{2}-20x-600=-10x
-600 ಪಡೆದುಕೊಳ್ಳಲು 100 ದಿಂದ 700 ಕಳೆಯಿರಿ.
x^{2}-20x-600+10x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
x^{2}-10x-600=0
-10x ಪಡೆದುಕೊಳ್ಳಲು -20x ಮತ್ತು 10x ಕೂಡಿಸಿ.
a+b=-10 ab=-600
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು x^{2}-10x-600 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -600 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-30 b=20
ಪರಿಹಾರವು -10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x-30\right)\left(x+20\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(x+a\right)\left(x+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x=30 x=-20
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-30=0 ಮತ್ತು x+20=0 ಪರಿಹರಿಸಿ.
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-20x+100=700-10x
70-x ದಿಂದ 10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-20x+100-700=-10x
ಎರಡೂ ಕಡೆಗಳಿಂದ 700 ಕಳೆಯಿರಿ.
x^{2}-20x-600=-10x
-600 ಪಡೆದುಕೊಳ್ಳಲು 100 ದಿಂದ 700 ಕಳೆಯಿರಿ.
x^{2}-20x-600+10x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
x^{2}-10x-600=0
-10x ಪಡೆದುಕೊಳ್ಳಲು -20x ಮತ್ತು 10x ಕೂಡಿಸಿ.
a+b=-10 ab=1\left(-600\right)=-600
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx-600 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-600 2,-300 3,-200 4,-150 5,-120 6,-100 8,-75 10,-60 12,-50 15,-40 20,-30 24,-25
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -600 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-600=-599 2-300=-298 3-200=-197 4-150=-146 5-120=-115 6-100=-94 8-75=-67 10-60=-50 12-50=-38 15-40=-25 20-30=-10 24-25=-1
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-30 b=20
ಪರಿಹಾರವು -10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-30x\right)+\left(20x-600\right)
\left(x^{2}-30x\right)+\left(20x-600\right) ನ ಹಾಗೆ x^{2}-10x-600 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-30\right)+20\left(x-30\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 20 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-30\right)\left(x+20\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-30 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=30 x=-20
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-30=0 ಮತ್ತು x+20=0 ಪರಿಹರಿಸಿ.
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-20x+100=700-10x
70-x ದಿಂದ 10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-20x+100-700=-10x
ಎರಡೂ ಕಡೆಗಳಿಂದ 700 ಕಳೆಯಿರಿ.
x^{2}-20x-600=-10x
-600 ಪಡೆದುಕೊಳ್ಳಲು 100 ದಿಂದ 700 ಕಳೆಯಿರಿ.
x^{2}-20x-600+10x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
x^{2}-10x-600=0
-10x ಪಡೆದುಕೊಳ್ಳಲು -20x ಮತ್ತು 10x ಕೂಡಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-600\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -10 ಮತ್ತು c ಗೆ -600 ಬದಲಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-600\right)}}{2}
ವರ್ಗ -10.
x=\frac{-\left(-10\right)±\sqrt{100+2400}}{2}
-600 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{2500}}{2}
2400 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-\left(-10\right)±50}{2}
2500 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{10±50}{2}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
x=\frac{60}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±50}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 50 ಗೆ 10 ಸೇರಿಸಿ.
x=30
2 ದಿಂದ 60 ಭಾಗಿಸಿ.
x=-\frac{40}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±50}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 50 ಕಳೆಯಿರಿ.
x=-20
2 ದಿಂದ -40 ಭಾಗಿಸಿ.
x=30 x=-20
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-20x+100=10\left(70-x\right)
\left(x-10\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}-20x+100=700-10x
70-x ದಿಂದ 10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-20x+100+10x=700
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
x^{2}-10x+100=700
-10x ಪಡೆದುಕೊಳ್ಳಲು -20x ಮತ್ತು 10x ಕೂಡಿಸಿ.
x^{2}-10x=700-100
ಎರಡೂ ಕಡೆಗಳಿಂದ 100 ಕಳೆಯಿರಿ.
x^{2}-10x=600
600 ಪಡೆದುಕೊಳ್ಳಲು 700 ದಿಂದ 100 ಕಳೆಯಿರಿ.
x^{2}-10x+\left(-5\right)^{2}=600+\left(-5\right)^{2}
-5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-10x+25=600+25
ವರ್ಗ -5.
x^{2}-10x+25=625
25 ಗೆ 600 ಸೇರಿಸಿ.
\left(x-5\right)^{2}=625
ಅಪವರ್ತನ x^{2}-10x+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-5\right)^{2}}=\sqrt{625}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-5=25 x-5=-25
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=30 x=-20
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.