ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

13924-236x+x^{2}=0\times 8x
\left(118-x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
13924-236x+x^{2}=0x
0 ಪಡೆದುಕೊಳ್ಳಲು 0 ಮತ್ತು 8 ಗುಣಿಸಿ.
13924-236x+x^{2}=0
ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಗುಣಿಸಿದರೆ ಶೂನ್ಯ ಬರುತ್ತದೆ.
x^{2}-236x+13924=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-236\right)±\sqrt{\left(-236\right)^{2}-4\times 13924}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -236 ಮತ್ತು c ಗೆ 13924 ಬದಲಿಸಿ.
x=\frac{-\left(-236\right)±\sqrt{55696-4\times 13924}}{2}
ವರ್ಗ -236.
x=\frac{-\left(-236\right)±\sqrt{55696-55696}}{2}
13924 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-236\right)±\sqrt{0}}{2}
-55696 ಗೆ 55696 ಸೇರಿಸಿ.
x=-\frac{-236}{2}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{236}{2}
-236 ನ ವಿಲೋಮವು 236 ಆಗಿದೆ.
x=118
2 ದಿಂದ 236 ಭಾಗಿಸಿ.
13924-236x+x^{2}=0\times 8x
\left(118-x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
13924-236x+x^{2}=0x
0 ಪಡೆದುಕೊಳ್ಳಲು 0 ಮತ್ತು 8 ಗುಣಿಸಿ.
13924-236x+x^{2}=0
ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಗುಣಿಸಿದರೆ ಶೂನ್ಯ ಬರುತ್ತದೆ.
-236x+x^{2}=-13924
ಎರಡೂ ಕಡೆಗಳಿಂದ 13924 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
x^{2}-236x=-13924
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}-236x+\left(-118\right)^{2}=-13924+\left(-118\right)^{2}
-118 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -236 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -118 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-236x+13924=-13924+13924
ವರ್ಗ -118.
x^{2}-236x+13924=0
13924 ಗೆ -13924 ಸೇರಿಸಿ.
\left(x-118\right)^{2}=0
ಅಪವರ್ತನ x^{2}-236x+13924. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-118\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-118=0 x-118=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=118 x=118
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 118 ಸೇರಿಸಿ.
x=118
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.