ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(\frac{3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\right)^{2}
\frac{1}{3-\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 3+\sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\left(\frac{3+\sqrt{2}}{3^{2}-\left(\sqrt{2}\right)^{2}}\right)^{2}
\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{3+\sqrt{2}}{9-2}\right)^{2}
ವರ್ಗ 3. ವರ್ಗ \sqrt{2}.
\left(\frac{3+\sqrt{2}}{7}\right)^{2}
7 ಪಡೆದುಕೊಳ್ಳಲು 9 ದಿಂದ 2 ಕಳೆಯಿರಿ.
\frac{\left(3+\sqrt{2}\right)^{2}}{7^{2}}
\frac{3+\sqrt{2}}{7} ಅನ್ನು ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಲು, ಗಣಕ ಮತ್ತು ಅಪವರ್ತ್ಯಗಳೆರಡನ್ನೂ ಘಾತವಾಗಿ ಹೆಚ್ಚಿಸಿ ತದನಂತರ ಭಾಗಿಸಿ.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{7^{2}}
\left(3+\sqrt{2}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\frac{9+6\sqrt{2}+2}{7^{2}}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{11+6\sqrt{2}}{7^{2}}
11 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 2 ಸೇರಿಸಿ.
\frac{11+6\sqrt{2}}{49}
2 ನ ಘಾತಕ್ಕೆ 7 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 49 ಪಡೆಯಿರಿ.