ಮೌಲ್ಯಮಾಪನ
4\sqrt{3}+7\approx 13.92820323
ವಿಸ್ತರಿಸು
4 \sqrt{3} + 7 = 13.92820323
ರಸಪ್ರಶ್ನೆ
Arithmetic
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
{ \left( \frac{ \sqrt{ 3 } +1 }{ \sqrt{ 3 } -1 } \right) }^{ 2 }
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
\frac{\sqrt{3}+1}{\sqrt{3}-1} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{3}+1 ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
ವರ್ಗ \sqrt{3}. ವರ್ಗ 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 1 ಕಳೆಯಿರಿ.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು \sqrt{3}+1 ಮತ್ತು \sqrt{3}+1 ಗುಣಿಸಿ.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 1 ಸೇರಿಸಿ.
\left(2+\sqrt{3}\right)^{2}
2+\sqrt{3} ಪಡೆಯಲು 4+2\sqrt{3} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(2+\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4+4\sqrt{3}+3
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
7+4\sqrt{3}
7 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಸೇರಿಸಿ.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
\frac{\sqrt{3}+1}{\sqrt{3}-1} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{3}+1 ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
ವರ್ಗ \sqrt{3}. ವರ್ಗ 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 1 ಕಳೆಯಿರಿ.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ಪಡೆದುಕೊಳ್ಳಲು \sqrt{3}+1 ಮತ್ತು \sqrt{3}+1 ಗುಣಿಸಿ.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 1 ಸೇರಿಸಿ.
\left(2+\sqrt{3}\right)^{2}
2+\sqrt{3} ಪಡೆಯಲು 4+2\sqrt{3} ನ ಪ್ರತಿ ಪದವನ್ನು 2 ರಿಂದ ಭಾಗಿಸಿ.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(2+\sqrt{3}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4+4\sqrt{3}+3
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
7+4\sqrt{3}
7 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 3 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}