v ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}v=\frac{\pi \sigma _{1}-E\epsilon }{\pi \left(\sigma _{2}+\sigma _{3}\right)}\text{, }&E\neq 0\text{ and }\sigma _{2}\neq -\sigma _{3}\\v\in \mathrm{C}\text{, }&\sigma _{1}=\frac{E\epsilon }{\pi }\text{ and }\sigma _{2}=-\sigma _{3}\text{ and }E\neq 0\end{matrix}\right.
E ಪರಿಹರಿಸಿ
\left\{\begin{matrix}E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }&\sigma _{1}\neq v\left(\sigma _{2}+\sigma _{3}\right)\text{ and }\epsilon \neq 0\text{ and }\sigma _{1}\neq v\sigma _{2}+v\sigma _{3}\\E\neq 0\text{, }&\epsilon =0\text{ and }\sigma _{1}=v\left(\sigma _{2}+\sigma _{3}\right)\end{matrix}\right.
v ಪರಿಹರಿಸಿ
\left\{\begin{matrix}v=\frac{\pi \sigma _{1}-E\epsilon }{\pi \left(\sigma _{2}+\sigma _{3}\right)}\text{, }&E\neq 0\text{ and }\sigma _{2}\neq -\sigma _{3}\\v\in \mathrm{R}\text{, }&\sigma _{1}=\frac{E\epsilon }{\pi }\text{ and }\sigma _{2}=-\sigma _{3}\text{ and }E\neq 0\end{matrix}\right.
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
E ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
\sigma _{2}+\sigma _{3} ದಿಂದ v ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
v\sigma _{2}+v\sigma _{3} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
\sigma _{1}-v\sigma _{2}-v\sigma _{3} ದಿಂದ \pi ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
ಎರಡೂ ಕಡೆಗಳಿಂದ \pi \sigma _{1} ಕಳೆಯಿರಿ.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
v ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
-\pi \sigma _{2}-\pi \sigma _{3} ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
-\pi \sigma _{2}-\pi \sigma _{3} ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -\pi \sigma _{2}-\pi \sigma _{3} ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
-\pi \sigma _{2}-\pi \sigma _{3} ದಿಂದ -\sigma _{1}\pi +\epsilon E ಭಾಗಿಸಿ.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ E ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. E ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
\sigma _{2}+\sigma _{3} ದಿಂದ v ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
v\sigma _{2}+v\sigma _{3} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
\sigma _{1}-v\sigma _{2}-v\sigma _{3} ದಿಂದ \pi ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{3}-\pi v\sigma _{2}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\epsilon E}{\epsilon }=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
\epsilon ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
\epsilon ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \epsilon ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }E\neq 0
E ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
E ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
\sigma _{2}+\sigma _{3} ದಿಂದ v ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
v\sigma _{2}+v\sigma _{3} ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
\sigma _{1}-v\sigma _{2}-v\sigma _{3} ದಿಂದ \pi ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
ಎರಡೂ ಕಡೆಗಳಿಂದ \pi \sigma _{1} ಕಳೆಯಿರಿ.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
ಪದಗಳನ್ನು ಮರುಕ್ರಮಗೊಳಿಸಿ.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
v ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
-\pi \sigma _{2}-\pi \sigma _{3} ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
-\pi \sigma _{2}-\pi \sigma _{3} ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -\pi \sigma _{2}-\pi \sigma _{3} ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
-\pi \sigma _{2}-\pi \sigma _{3} ದಿಂದ \epsilon E-\pi \sigma _{1} ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}