x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\sqrt{3}+1\approx 2.732050808
x=1-\sqrt{3}\approx -0.732050808
x ಪರಿಹರಿಸಿ
x=\sqrt{3}+1\approx 2.732050808
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{x^{2}-1} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು x^{2}-1 ಪಡೆಯಿರಿ.
x^{2}-1=2x+1
2 ನ ಘಾತಕ್ಕೆ \sqrt{2x+1} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 2x+1 ಪಡೆಯಿರಿ.
x^{2}-1-2x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}-1-2x-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}-2-2x=0
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}-2x-2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -2 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
ವರ್ಗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
8 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
12 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2±2\sqrt{3}}{2}
-2 ನ ವಿಲೋಮವು 2 ಆಗಿದೆ.
x=\frac{2\sqrt{3}+2}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{3}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{3} ಗೆ 2 ಸೇರಿಸಿ.
x=\sqrt{3}+1
2 ದಿಂದ 2+2\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{2-2\sqrt{3}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{3}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 2\sqrt{3} ಕಳೆಯಿರಿ.
x=1-\sqrt{3}
2 ದಿಂದ 2-2\sqrt{3} ಭಾಗಿಸಿ.
x=\sqrt{3}+1 x=1-\sqrt{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ \sqrt{3}+1 ಬದಲಿಸಿ.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=\sqrt{3}+1 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 1-\sqrt{3} ಬದಲಿಸಿ.
i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}=i\left(-\left(3-2\times 3^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=1-\sqrt{3} ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
x=\sqrt{3}+1 x=1-\sqrt{3}
\sqrt{x^{2}-1}=\sqrt{2x+1} ನ ಎಲ್ಲಾ ಪರಿಹಾರಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(\sqrt{2x+1}\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
x^{2}-1=\left(\sqrt{2x+1}\right)^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{x^{2}-1} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು x^{2}-1 ಪಡೆಯಿರಿ.
x^{2}-1=2x+1
2 ನ ಘಾತಕ್ಕೆ \sqrt{2x+1} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 2x+1 ಪಡೆಯಿರಿ.
x^{2}-1-2x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}-1-2x-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}-2-2x=0
-2 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}-2x-2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -2 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
ವರ್ಗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
-2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-2\right)±\sqrt{12}}{2}
8 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2}
12 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2±2\sqrt{3}}{2}
-2 ನ ವಿಲೋಮವು 2 ಆಗಿದೆ.
x=\frac{2\sqrt{3}+2}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{3}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{3} ಗೆ 2 ಸೇರಿಸಿ.
x=\sqrt{3}+1
2 ದಿಂದ 2+2\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{2-2\sqrt{3}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{3}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 2\sqrt{3} ಕಳೆಯಿರಿ.
x=1-\sqrt{3}
2 ದಿಂದ 2-2\sqrt{3} ಭಾಗಿಸಿ.
x=\sqrt{3}+1 x=1-\sqrt{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\sqrt{\left(\sqrt{3}+1\right)^{2}-1}=\sqrt{2\left(\sqrt{3}+1\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ \sqrt{3}+1 ಬದಲಿಸಿ.
\left(3+2\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(2\times 3^{\frac{1}{2}}+3\right)^{\frac{1}{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=\sqrt{3}+1 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
\sqrt{\left(1-\sqrt{3}\right)^{2}-1}=\sqrt{2\left(1-\sqrt{3}\right)+1}
\sqrt{x^{2}-1}=\sqrt{2x+1} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 1-\sqrt{3} ಬದಲಿಸಿ. ಅಭಿವ್ಯಕ್ತಿ \sqrt{\left(1-\sqrt{3}\right)^{2}-1} ಅನ್ನು ವ್ಯಾಖ್ಯಾನಿಸಲಾಗಿಲ್ಲ ಏಕೆಂದರೆ ರಾಡಿಕಾಂಡ್ ಋಣಾತ್ಮಕವಾಗಿರಲು ಸಾಧ್ಯವಿಲ್ಲ.
x=\sqrt{3}+1
ಸಮೀಕರಣ \sqrt{x^{2}-1}=\sqrt{2x+1} ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}