x ಪರಿಹರಿಸಿ
x=2
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(\sqrt{x+2}+1\right)^{2}=\left(\sqrt{3x+3}\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
\left(\sqrt{x+2}\right)^{2}+2\sqrt{x+2}+1=\left(\sqrt{3x+3}\right)^{2}
\left(\sqrt{x+2}+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x+2+2\sqrt{x+2}+1=\left(\sqrt{3x+3}\right)^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{x+2} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು x+2 ಪಡೆಯಿರಿ.
x+3+2\sqrt{x+2}=\left(\sqrt{3x+3}\right)^{2}
3 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 1 ಸೇರಿಸಿ.
x+3+2\sqrt{x+2}=3x+3
2 ನ ಘಾತಕ್ಕೆ \sqrt{3x+3} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 3x+3 ಪಡೆಯಿರಿ.
2\sqrt{x+2}=3x+3-\left(x+3\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ x+3 ಕಳೆಯಿರಿ.
2\sqrt{x+2}=3x+3-x-3
x+3 ವಿರುದ್ಧವನ್ನು ಹುಡುಕಲು, ಪ್ರತಿ ಪದದ ವಿರುದ್ಧ ಪದವನ್ನು ಹುಡುಕಿ.
2\sqrt{x+2}=2x+3-3
2x ಪಡೆದುಕೊಳ್ಳಲು 3x ಮತ್ತು -x ಕೂಡಿಸಿ.
2\sqrt{x+2}=2x
0 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
\sqrt{x+2}=x
ಎರಡೂ ಬದಿಗಳಲ್ಲಿ 2 ರದ್ದುಗೊಳಿಸಿ.
\left(\sqrt{x+2}\right)^{2}=x^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
x+2=x^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{x+2} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು x+2 ಪಡೆಯಿರಿ.
x+2-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-x^{2}+x+2=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=1 ab=-2=-2
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -x^{2}+ax+bx+2 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=2 b=-1
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(-x^{2}+2x\right)+\left(-x+2\right)
\left(-x^{2}+2x\right)+\left(-x+2\right) ನ ಹಾಗೆ -x^{2}+x+2 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-x\left(x-2\right)-\left(x-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-2\right)\left(-x-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=2 x=-1
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-2=0 ಮತ್ತು -x-1=0 ಪರಿಹರಿಸಿ.
\sqrt{2+2}+1=\sqrt{3\times 2+3}
\sqrt{x+2}+1=\sqrt{3x+3} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ.
3=3
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=2 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
\sqrt{-1+2}+1=\sqrt{3\left(-1\right)+3}
\sqrt{x+2}+1=\sqrt{3x+3} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ -1 ಬದಲಿಸಿ.
2=0
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=-1 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ.
\sqrt{2+2}+1=\sqrt{3\times 2+3}
\sqrt{x+2}+1=\sqrt{3x+3} ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ.
3=3
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=2 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
x=2
ಸಮೀಕರಣ \sqrt{x+2}+1=\sqrt{3x+3} ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}