ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(\sqrt{40-3x}\right)^{2}=x^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
40-3x=x^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{40-3x} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 40-3x ಪಡೆಯಿರಿ.
40-3x-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-x^{2}-3x+40=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=-3 ab=-40=-40
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -x^{2}+ax+bx+40 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-40 2,-20 4,-10 5,-8
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -40 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=5 b=-8
ಪರಿಹಾರವು -3 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-x^{2}+5x\right)+\left(-8x+40\right)
\left(-x^{2}+5x\right)+\left(-8x+40\right) ನ ಹಾಗೆ -x^{2}-3x+40 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(-x+5\right)+8\left(-x+5\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 8 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(-x+5\right)\left(x+8\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ -x+5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=5 x=-8
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, -x+5=0 ಮತ್ತು x+8=0 ಪರಿಹರಿಸಿ.
\sqrt{40-3\times 5}=5
\sqrt{40-3x}=x ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 5 ಬದಲಿಸಿ.
5=5
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=5 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
\sqrt{40-3\left(-8\right)}=-8
\sqrt{40-3x}=x ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ -8 ಬದಲಿಸಿ.
8=-8
ಸರಳೀಕೃತಗೊಳಿಸಿ. x=-8 ಮೌಲ್ಯವು ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಎಡ ಮತ್ತು ಬಲಬದಿಯಲ್ಲಿ ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಿವೆ.
x=5
ಸಮೀಕರಣ \sqrt{40-3x}=x ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.