ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(\sqrt{2-x}\right)^{2}=\left(x-1\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
2-x=\left(x-1\right)^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{2-x} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 2-x ಪಡೆಯಿರಿ.
2-x=x^{2}-2x+1
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
2-x-x^{2}=-2x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
2-x-x^{2}+2x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
2+x-x^{2}=1
x ಪಡೆದುಕೊಳ್ಳಲು -x ಮತ್ತು 2x ಕೂಡಿಸಿ.
2+x-x^{2}-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
1+x-x^{2}=0
1 ಪಡೆದುಕೊಳ್ಳಲು 2 ದಿಂದ 1 ಕಳೆಯಿರಿ.
-x^{2}+x+1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 1 ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
ವರ್ಗ 1.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
4 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-1±\sqrt{5}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{5}-1}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±\sqrt{5}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{5} ಗೆ -1 ಸೇರಿಸಿ.
x=\frac{1-\sqrt{5}}{2}
-2 ದಿಂದ -1+\sqrt{5} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{5}-1}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±\sqrt{5}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1 ದಿಂದ \sqrt{5} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{5}+1}{2}
-2 ದಿಂದ -1-\sqrt{5} ಭಾಗಿಸಿ.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\sqrt{2-\frac{1-\sqrt{5}}{2}}=\frac{1-\sqrt{5}}{2}-1
\sqrt{2-x}=x-1 ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ \frac{1-\sqrt{5}}{2} ಬದಲಿಸಿ.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=-\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}
ಸರಳೀಕೃತಗೊಳಿಸಿ. x=\frac{1-\sqrt{5}}{2} ಮೌಲ್ಯವು ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಎಡ ಮತ್ತು ಬಲಬದಿಯಲ್ಲಿ ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಿವೆ.
\sqrt{2-\frac{\sqrt{5}+1}{2}}=\frac{\sqrt{5}+1}{2}-1
\sqrt{2-x}=x-1 ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ \frac{\sqrt{5}+1}{2} ಬದಲಿಸಿ.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\frac{1}{2}\times 5^{\frac{1}{2}}-\frac{1}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=\frac{\sqrt{5}+1}{2} ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
x=\frac{\sqrt{5}+1}{2}
ಸಮೀಕರಣ \sqrt{2-x}=x-1 ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.