x ಪರಿಹರಿಸಿ
x=2
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(\sqrt{17+2x-3x^{2}}\right)^{2}=\left(x+1\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
17+2x-3x^{2}=\left(x+1\right)^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{17+2x-3x^{2}} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 17+2x-3x^{2} ಪಡೆಯಿರಿ.
17+2x-3x^{2}=x^{2}+2x+1
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
17+2x-3x^{2}-x^{2}=2x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
17+2x-4x^{2}=2x+1
-4x^{2} ಪಡೆದುಕೊಳ್ಳಲು -3x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
17+2x-4x^{2}-2x=1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
17-4x^{2}=1
0 ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು -2x ಕೂಡಿಸಿ.
-4x^{2}=1-17
ಎರಡೂ ಕಡೆಗಳಿಂದ 17 ಕಳೆಯಿರಿ.
-4x^{2}=-16
-16 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 17 ಕಳೆಯಿರಿ.
x^{2}=\frac{-16}{-4}
-4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}=4
4 ಪಡೆಯಲು -4 ರಿಂದ -16 ವಿಭಾಗಿಸಿ.
x=2 x=-2
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\sqrt{17+2\times 2-3\times 2^{2}}=2+1
\sqrt{17+2x-3x^{2}}=x+1 ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ.
3=3
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=2 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
\sqrt{17+2\left(-2\right)-3\left(-2\right)^{2}}=-2+1
\sqrt{17+2x-3x^{2}}=x+1 ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ -2 ಬದಲಿಸಿ.
1=-1
ಸರಳೀಕೃತಗೊಳಿಸಿ. x=-2 ಮೌಲ್ಯವು ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಎಡ ಮತ್ತು ಬಲಬದಿಯಲ್ಲಿ ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಿವೆ.
x=2
ಸಮೀಕರಣ \sqrt{17+2x-3x^{2}}=x+1 ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}