ಮೌಲ್ಯಮಾಪನ
3\sqrt{5}\approx 6.708203932
ರಸಪ್ರಶ್ನೆ
Arithmetic
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
\sqrt { 15 } ( 2 \sqrt { 5 } + \sqrt { 3 } ) - 2 \sqrt { 75 } =
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2\sqrt{15}\sqrt{5}+\sqrt{15}\sqrt{3}-2\sqrt{75}
2\sqrt{5}+\sqrt{3} ದಿಂದ \sqrt{15} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2\sqrt{5}\sqrt{3}\sqrt{5}+\sqrt{15}\sqrt{3}-2\sqrt{75}
ಅಪವರ್ತನ 15=5\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{5}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{5\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
2\times 5\sqrt{3}+\sqrt{15}\sqrt{3}-2\sqrt{75}
5 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{5} ಮತ್ತು \sqrt{5} ಗುಣಿಸಿ.
10\sqrt{3}+\sqrt{15}\sqrt{3}-2\sqrt{75}
10 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 5 ಗುಣಿಸಿ.
10\sqrt{3}+\sqrt{3}\sqrt{5}\sqrt{3}-2\sqrt{75}
ಅಪವರ್ತನ 15=3\times 5. ವರ್ಗಮೂಲಗಳ \sqrt{3}\sqrt{5} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3\times 5} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
10\sqrt{3}+3\sqrt{5}-2\sqrt{75}
3 ಪಡೆದುಕೊಳ್ಳಲು \sqrt{3} ಮತ್ತು \sqrt{3} ಗುಣಿಸಿ.
10\sqrt{3}+3\sqrt{5}-2\times 5\sqrt{3}
ಅಪವರ್ತನ 75=5^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{5^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{5^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 5^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
10\sqrt{3}+3\sqrt{5}-10\sqrt{3}
-10 ಪಡೆದುಕೊಳ್ಳಲು -2 ಮತ್ತು 5 ಗುಣಿಸಿ.
3\sqrt{5}
0 ಪಡೆದುಕೊಳ್ಳಲು 10\sqrt{3} ಮತ್ತು -10\sqrt{3} ಕೂಡಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}