ಮೌಲ್ಯಮಾಪನ
\frac{\sqrt{2005}}{10}\approx 4.477722635
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\sqrt{\left(\frac{4+1}{2}-\frac{1}{6}+0.2\right)\times 9-\frac{11}{4}}
4 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 2 ಗುಣಿಸಿ.
\sqrt{\left(\frac{5}{2}-\frac{1}{6}+0.2\right)\times 9-\frac{11}{4}}
5 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 1 ಸೇರಿಸಿ.
\sqrt{\left(\frac{15}{6}-\frac{1}{6}+0.2\right)\times 9-\frac{11}{4}}
2 ಮತ್ತು 6 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 6 ಆಗಿದೆ. 6 ಛೇದದ ಮೂಲಕ \frac{5}{2} ಮತ್ತು \frac{1}{6} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\sqrt{\left(\frac{15-1}{6}+0.2\right)\times 9-\frac{11}{4}}
\frac{15}{6} ಮತ್ತು \frac{1}{6} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\sqrt{\left(\frac{14}{6}+0.2\right)\times 9-\frac{11}{4}}
14 ಪಡೆದುಕೊಳ್ಳಲು 15 ದಿಂದ 1 ಕಳೆಯಿರಿ.
\sqrt{\left(\frac{7}{3}+0.2\right)\times 9-\frac{11}{4}}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{14}{6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\sqrt{\left(\frac{7}{3}+\frac{1}{5}\right)\times 9-\frac{11}{4}}
0.2 ದಶಮಾಂಶ ಸಂಖ್ಯೆಯನ್ನು ಅದರ ಭಿನ್ನಾಂಕ \frac{2}{10} ಗೆ ಮಾರ್ಪಡಿಸಿ. 2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\sqrt{\left(\frac{35}{15}+\frac{3}{15}\right)\times 9-\frac{11}{4}}
3 ಮತ್ತು 5 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 15 ಆಗಿದೆ. 15 ಛೇದದ ಮೂಲಕ \frac{7}{3} ಮತ್ತು \frac{1}{5} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\sqrt{\frac{35+3}{15}\times 9-\frac{11}{4}}
\frac{35}{15} ಮತ್ತು \frac{3}{15} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\sqrt{\frac{38}{15}\times 9-\frac{11}{4}}
38 ಪಡೆದುಕೊಳ್ಳಲು 35 ಮತ್ತು 3 ಸೇರಿಸಿ.
\sqrt{\frac{38\times 9}{15}-\frac{11}{4}}
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{38}{15}\times 9 ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\sqrt{\frac{342}{15}-\frac{11}{4}}
342 ಪಡೆದುಕೊಳ್ಳಲು 38 ಮತ್ತು 9 ಗುಣಿಸಿ.
\sqrt{\frac{114}{5}-\frac{11}{4}}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{342}{15} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
\sqrt{\frac{456}{20}-\frac{55}{20}}
5 ಮತ್ತು 4 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 20 ಆಗಿದೆ. 20 ಛೇದದ ಮೂಲಕ \frac{114}{5} ಮತ್ತು \frac{11}{4} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\sqrt{\frac{456-55}{20}}
\frac{456}{20} ಮತ್ತು \frac{55}{20} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\sqrt{\frac{401}{20}}
401 ಪಡೆದುಕೊಳ್ಳಲು 456 ದಿಂದ 55 ಕಳೆಯಿರಿ.
\frac{\sqrt{401}}{\sqrt{20}}
\frac{\sqrt{401}}{\sqrt{20}} ವರ್ಗಮೂಲದ ಭಾಗಿಸುವಿಕೆಯನ್ನಾಗಿ \sqrt{\frac{401}{20}} ವಿಭಜನೆಯ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{\sqrt{401}}{2\sqrt{5}}
ಅಪವರ್ತನ 20=2^{2}\times 5. ವರ್ಗಮೂಲಗಳ \sqrt{2^{2}}\sqrt{5} ಉತ್ಪನ್ನವಾಗಿ \sqrt{2^{2}\times 5} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 2^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{\sqrt{401}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
\frac{\sqrt{401}}{2\sqrt{5}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{5} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{\sqrt{401}\sqrt{5}}{2\times 5}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
\frac{\sqrt{2005}}{2\times 5}
\sqrt{401} ಮತ್ತು \sqrt{5} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
\frac{\sqrt{2005}}{10}
10 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 5 ಗುಣಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}