ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

9a^{2}-6a-1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-1\right)}}{2\times 9}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 9, b ಗೆ -6 ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
a=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-1\right)}}{2\times 9}
ವರ್ಗ -6.
a=\frac{-\left(-6\right)±\sqrt{36-36\left(-1\right)}}{2\times 9}
9 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-\left(-6\right)±\sqrt{36+36}}{2\times 9}
-1 ಅನ್ನು -36 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-\left(-6\right)±\sqrt{72}}{2\times 9}
36 ಗೆ 36 ಸೇರಿಸಿ.
a=\frac{-\left(-6\right)±6\sqrt{2}}{2\times 9}
72 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{6±6\sqrt{2}}{2\times 9}
-6 ನ ವಿಲೋಮವು 6 ಆಗಿದೆ.
a=\frac{6±6\sqrt{2}}{18}
9 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{6\sqrt{2}+6}{18}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{6±6\sqrt{2}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6\sqrt{2} ಗೆ 6 ಸೇರಿಸಿ.
a=\frac{\sqrt{2}+1}{3}
18 ದಿಂದ 6+6\sqrt{2} ಭಾಗಿಸಿ.
a=\frac{6-6\sqrt{2}}{18}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{6±6\sqrt{2}}{18} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ದಿಂದ 6\sqrt{2} ಕಳೆಯಿರಿ.
a=\frac{1-\sqrt{2}}{3}
18 ದಿಂದ 6-6\sqrt{2} ಭಾಗಿಸಿ.
a=\frac{\sqrt{2}+1}{3} a=\frac{1-\sqrt{2}}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
9a^{2}-6a-1=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
9a^{2}-6a-1-\left(-1\right)=-\left(-1\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.
9a^{2}-6a=-\left(-1\right)
-1 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
9a^{2}-6a=1
0 ದಿಂದ -1 ಕಳೆಯಿರಿ.
\frac{9a^{2}-6a}{9}=\frac{1}{9}
9 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a^{2}+\left(-\frac{6}{9}\right)a=\frac{1}{9}
9 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 9 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a^{2}-\frac{2}{3}a=\frac{1}{9}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-6}{9} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
a^{2}-\frac{2}{3}a+\left(-\frac{1}{3}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{2}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
a^{2}-\frac{2}{3}a+\frac{1}{9}=\frac{1+1}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{3} ವರ್ಗಗೊಳಿಸಿ.
a^{2}-\frac{2}{3}a+\frac{1}{9}=\frac{2}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{9} ಗೆ \frac{1}{9} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(a-\frac{1}{3}\right)^{2}=\frac{2}{9}
ಅಪವರ್ತನ a^{2}-\frac{2}{3}a+\frac{1}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(a-\frac{1}{3}\right)^{2}}=\sqrt{\frac{2}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a-\frac{1}{3}=\frac{\sqrt{2}}{3} a-\frac{1}{3}=-\frac{\sqrt{2}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
a=\frac{\sqrt{2}+1}{3} a=\frac{1-\sqrt{2}}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{3} ಸೇರಿಸಿ.