ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\pi x^{2}+3x+0.1415926=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \pi , b ಗೆ 3 ಮತ್ತು c ಗೆ 0.1415926 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
\pi ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
0.1415926 ಅನ್ನು -4\pi ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
-\frac{707963\pi }{1250000} ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
9-\frac{707963\pi }{1250000} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{56250000-3539815\pi }}{2500} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
2\pi ದಿಂದ -3+\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \frac{\sqrt{56250000-3539815\pi }}{2500} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
2\pi ದಿಂದ -3-\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\pi x^{2}+3x+0.1415926=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 0.1415926 ಕಳೆಯಿರಿ.
\pi x^{2}+3x=-0.1415926
0.1415926 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \pi ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
\pi ದಿಂದ -0.1415926 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
\frac{3}{2\pi } ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{\pi } ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2\pi } ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
ವರ್ಗ \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
\frac{9}{4\pi ^{2}} ಗೆ -\frac{707963}{5000000\pi } ಸೇರಿಸಿ.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
ಅಪವರ್ತನ x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2\pi } ಕಳೆಯಿರಿ.
\pi x^{2}+3x+0.1415926=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \pi , b ಗೆ 3 ಮತ್ತು c ಗೆ 0.1415926 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
\pi ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
0.1415926 ಅನ್ನು -4\pi ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
-\frac{707963\pi }{1250000} ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
9-\frac{707963\pi }{1250000} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{56250000-3539815\pi }}{2500} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
2\pi ದಿಂದ -3+\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \frac{\sqrt{56250000-3539815\pi }}{2500} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
2\pi ದಿಂದ -3-\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\pi x^{2}+3x+0.1415926=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 0.1415926 ಕಳೆಯಿರಿ.
\pi x^{2}+3x=-0.1415926
0.1415926 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \pi ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
\pi ದಿಂದ -0.1415926 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
\frac{3}{2\pi } ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{\pi } ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2\pi } ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
ವರ್ಗ \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
\frac{9}{4\pi ^{2}} ಗೆ -\frac{707963}{5000000\pi } ಸೇರಿಸಿ.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
ಅಪವರ್ತನ x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2\pi } ಕಳೆಯಿರಿ.