x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{\sqrt{-\frac{707963\pi }{1250000}+9}-3}{2\pi }\approx -0.049793999
x=-\frac{\sqrt{-\frac{707963\pi }{1250000}+9}+3}{2\pi }\approx -0.905135659
x ಪರಿಹರಿಸಿ
x=\frac{\sqrt{5\left(11250000-707963\pi \right)}-7500}{5000\pi }\approx -0.049793999
x=-\frac{\sqrt{5\left(11250000-707963\pi \right)}+7500}{5000\pi }\approx -0.905135659
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\pi x^{2}+3x+0.1415926=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \pi , b ಗೆ 3 ಮತ್ತು c ಗೆ 0.1415926 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
\pi ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
0.1415926 ಅನ್ನು -4\pi ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
-\frac{707963\pi }{1250000} ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
9-\frac{707963\pi }{1250000} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{56250000-3539815\pi }}{2500} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
2\pi ದಿಂದ -3+\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \frac{\sqrt{56250000-3539815\pi }}{2500} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
2\pi ದಿಂದ -3-\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\pi x^{2}+3x+0.1415926=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 0.1415926 ಕಳೆಯಿರಿ.
\pi x^{2}+3x=-0.1415926
0.1415926 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \pi ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
\pi ದಿಂದ -0.1415926 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
\frac{3}{2\pi } ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{\pi } ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2\pi } ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
ವರ್ಗ \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
\frac{9}{4\pi ^{2}} ಗೆ -\frac{707963}{5000000\pi } ಸೇರಿಸಿ.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
ಅಪವರ್ತನ x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2\pi } ಕಳೆಯಿರಿ.
\pi x^{2}+3x+0.1415926=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ \pi , b ಗೆ 3 ಮತ್ತು c ಗೆ 0.1415926 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
\pi ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
0.1415926 ಅನ್ನು -4\pi ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
-\frac{707963\pi }{1250000} ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
9-\frac{707963\pi }{1250000} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{56250000-3539815\pi }}{2500} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
2\pi ದಿಂದ -3+\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \frac{\sqrt{56250000-3539815\pi }}{2500} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
2\pi ದಿಂದ -3-\frac{\sqrt{56250000-3539815\pi }}{2500} ಭಾಗಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\pi x^{2}+3x+0.1415926=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 0.1415926 ಕಳೆಯಿರಿ.
\pi x^{2}+3x=-0.1415926
0.1415926 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
\pi ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ \pi ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
\pi ದಿಂದ -0.1415926 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
\frac{3}{2\pi } ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{\pi } ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{2\pi } ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
ವರ್ಗ \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
\frac{9}{4\pi ^{2}} ಗೆ -\frac{707963}{5000000\pi } ಸೇರಿಸಿ.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
ಅಪವರ್ತನ x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{2\pi } ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}