ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
y, x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

27+4y=-4x+3
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
27+4y+4x=3
ಎರಡೂ ಬದಿಗಳಿಗೆ 4x ಸೇರಿಸಿ.
4y+4x=3-27
ಎರಡೂ ಕಡೆಗಳಿಂದ 27 ಕಳೆಯಿರಿ.
4y+4x=-24
-24 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 27 ಕಳೆಯಿರಿ.
8x+3y=-8
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಬದಿಗಳಿಗೆ 3y ಸೇರಿಸಿ.
4y+4x=-24,3y+8x=-8
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
4y+4x=-24
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ y ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ y ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
4y=-4x-24
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 4x ಕಳೆಯಿರಿ.
y=\frac{1}{4}\left(-4x-24\right)
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=-x-6
-4x-24 ಅನ್ನು \frac{1}{4} ಬಾರಿ ಗುಣಿಸಿ.
3\left(-x-6\right)+8x=-8
ಇತರ ಸಮೀಕರಣ 3y+8x=-8 ನಲ್ಲಿ y ಗಾಗಿ -x-6 ಬದಲಿಸಿ.
-3x-18+8x=-8
-x-6 ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
5x-18=-8
8x ಗೆ -3x ಸೇರಿಸಿ.
5x=10
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 18 ಸೇರಿಸಿ.
x=2
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=-2-6
y=-x-6 ನಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
y=-8
-2 ಗೆ -6 ಸೇರಿಸಿ.
y=-8,x=2
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
27+4y=-4x+3
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
27+4y+4x=3
ಎರಡೂ ಬದಿಗಳಿಗೆ 4x ಸೇರಿಸಿ.
4y+4x=3-27
ಎರಡೂ ಕಡೆಗಳಿಂದ 27 ಕಳೆಯಿರಿ.
4y+4x=-24
-24 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 27 ಕಳೆಯಿರಿ.
8x+3y=-8
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಬದಿಗಳಿಗೆ 3y ಸೇರಿಸಿ.
4y+4x=-24,3y+8x=-8
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}4&4\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-24\\-8\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}4&4\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}-24\\-8\end{matrix}\right)
\left(\begin{matrix}4&4\\3&8\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}-24\\-8\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\3&8\end{matrix}\right))\left(\begin{matrix}-24\\-8\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{4\times 8-4\times 3}&-\frac{4}{4\times 8-4\times 3}\\-\frac{3}{4\times 8-4\times 3}&\frac{4}{4\times 8-4\times 3}\end{matrix}\right)\left(\begin{matrix}-24\\-8\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{3}{20}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-24\\-8\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-24\right)-\frac{1}{5}\left(-8\right)\\-\frac{3}{20}\left(-24\right)+\frac{1}{5}\left(-8\right)\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
y=-8,x=2
ಮಾತೃಕೆ ಅಂಶಗಳು y ಮತ್ತು x ಬೇರೆ ಮಾಡಿ.
27+4y=-4x+3
ಮೊದಲನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. 5 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
27+4y+4x=3
ಎರಡೂ ಬದಿಗಳಿಗೆ 4x ಸೇರಿಸಿ.
4y+4x=3-27
ಎರಡೂ ಕಡೆಗಳಿಂದ 27 ಕಳೆಯಿರಿ.
4y+4x=-24
-24 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 27 ಕಳೆಯಿರಿ.
8x+3y=-8
ಎರಡನೆಯ ಸಮೀಕರಣ ಪರಿಗಣಿಸಿ. ಎರಡೂ ಬದಿಗಳಿಗೆ 3y ಸೇರಿಸಿ.
4y+4x=-24,3y+8x=-8
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
3\times 4y+3\times 4x=3\left(-24\right),4\times 3y+4\times 8x=4\left(-8\right)
4y ಮತ್ತು 3y ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 3 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 4 ರಿಂದ ಗುಣಿಸಿ.
12y+12x=-72,12y+32x=-32
ಸರಳೀಕೃತಗೊಳಿಸಿ.
12y-12y+12x-32x=-72+32
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 12y+12x=-72 ದಿಂದ 12y+32x=-32 ಕಳೆಯಿರಿ.
12x-32x=-72+32
-12y ಗೆ 12y ಸೇರಿಸಿ. ನಿಯಮಗಳು 12y ಮತ್ತು -12y ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
-20x=-72+32
-32x ಗೆ 12x ಸೇರಿಸಿ.
-20x=-40
32 ಗೆ -72 ಸೇರಿಸಿ.
x=2
-20 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
3y+8\times 2=-8
3y+8x=-8 ನಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ y ಪರಿಹರಿಸಬಹುದು.
3y+16=-8
2 ಅನ್ನು 8 ಬಾರಿ ಗುಣಿಸಿ.
3y=-24
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
y=-8
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y=-8,x=2
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.