x, y ಪರಿಹರಿಸಿ
x=2
y=5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
8x+y=21,24x-5y=23
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
8x+y=21
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
8x=-y+21
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ y ಕಳೆಯಿರಿ.
x=\frac{1}{8}\left(-y+21\right)
8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{1}{8}y+\frac{21}{8}
-y+21 ಅನ್ನು \frac{1}{8} ಬಾರಿ ಗುಣಿಸಿ.
24\left(-\frac{1}{8}y+\frac{21}{8}\right)-5y=23
ಇತರ ಸಮೀಕರಣ 24x-5y=23 ನಲ್ಲಿ x ಗಾಗಿ \frac{-y+21}{8} ಬದಲಿಸಿ.
-3y+63-5y=23
\frac{-y+21}{8} ಅನ್ನು 24 ಬಾರಿ ಗುಣಿಸಿ.
-8y+63=23
-5y ಗೆ -3y ಸೇರಿಸಿ.
-8y=-40
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 63 ಕಳೆಯಿರಿ.
y=5
-8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{1}{8}\times 5+\frac{21}{8}
x=-\frac{1}{8}y+\frac{21}{8} ನಲ್ಲಿ y ಗಾಗಿ 5 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{-5+21}{8}
5 ಅನ್ನು -\frac{1}{8} ಬಾರಿ ಗುಣಿಸಿ.
x=2
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ -\frac{5}{8} ಗೆ \frac{21}{8} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
x=2,y=5
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
8x+y=21,24x-5y=23
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}8&1\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\23\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}8&1\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
\left(\begin{matrix}8&1\\24&-5\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8\left(-5\right)-24}&-\frac{1}{8\left(-5\right)-24}\\-\frac{24}{8\left(-5\right)-24}&\frac{8}{8\left(-5\right)-24}\end{matrix}\right)\left(\begin{matrix}21\\23\end{matrix}\right)
2\times 2 ಮಾತೃಕೆ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ಗೆ, ವಿಲೋಮ ಮಾತೃಕೆಯು \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮಾತೃಕೆ ಸಮೀಕರಣವನ್ನು ಮಾತೃಕೆ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯಾಗಿ ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{64}&\frac{1}{64}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}21\\23\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{64}\times 21+\frac{1}{64}\times 23\\\frac{3}{8}\times 21-\frac{1}{8}\times 23\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=2,y=5
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
8x+y=21,24x-5y=23
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
24\times 8x+24y=24\times 21,8\times 24x+8\left(-5\right)y=8\times 23
8x ಮತ್ತು 24x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 24 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 8 ರಿಂದ ಗುಣಿಸಿ.
192x+24y=504,192x-40y=184
ಸರಳೀಕೃತಗೊಳಿಸಿ.
192x-192x+24y+40y=504-184
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 192x+24y=504 ದಿಂದ 192x-40y=184 ಕಳೆಯಿರಿ.
24y+40y=504-184
-192x ಗೆ 192x ಸೇರಿಸಿ. ನಿಯಮಗಳು 192x ಮತ್ತು -192x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
64y=504-184
40y ಗೆ 24y ಸೇರಿಸಿ.
64y=320
-184 ಗೆ 504 ಸೇರಿಸಿ.
y=5
64 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
24x-5\times 5=23
24x-5y=23 ನಲ್ಲಿ y ಗಾಗಿ 5 ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
24x-25=23
5 ಅನ್ನು -5 ಬಾರಿ ಗುಣಿಸಿ.
24x=48
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 25 ಸೇರಿಸಿ.
x=2
24 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=2,y=5
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}